Home / Blog

Blog


Spotlight on Datura: A Poison Plant

By: Liz Clift

This is the time of year when, in the evenings, I can find bees buried into the trumpeted blossoms of Datura sp. These plants are commonly called datura, as well as devil’s trumpets, moonflowers, and jimsonweed (among other names). Datura is part of the nightshade family (Solanaceae) and all species of datura are poisonous, especially the seeds and flowers.

In my neighborhood, there are a few isolated patches of well-established datura spills onto the sidewalks in the summer. It is here I go looking for bees in datura. The bees crowd into the Datura blossoms—sometimes as many as six or seven at a time! —which open as the day cools into night. Fortunately for us, and for the local honeybee keepers, there’s no evidence that honey that may have been partially created from datura flowers has had any ill effects on people.

Datura. Image from: Wikimedia Commons

As a child, in the south, I would sometimes go on early morning walks. Datura, in bloom, and reflecting the light of the moon, appears exceptionally bright and I would marvel at this plant that defied what I considered at the time to be a basic premise of being a flowering plant: flower during the day so you can be pollinated. At the time, I didn’t know there were nighttime pollinators.

Large moths, including hawkmoths, are among other pollinators of datura, although I haven’t observed these pollinating the blossoms of my local plants (I also haven’t gone looking for them). Hawkmoths have been observed nestling their bodies inside the blossoms, and staying for a while, rather than hovering while collecting nectar. This may allow more pollen to accumulate on their wings, and thus increase the rate of pollination for this plant.

Perhaps you’re wondering why anyone would plant this plant, knowing it’s poisonous. Although people have a variety of reasons, I imagine that its large, showy blossoms are one reason.

Datura Blossoms. Image from: Wikimedia Commons

It’s good to be wary of datura, like other poisonous plants, as consumption can lead to death. However, many of these plants that we fear have long traditions of being used by our ancestors. It’s important we understand how these plants have been used historically. As with everything, the dose makes the poison (and in some cases, that is incredibly small). In this case, the specific species of datura, along with the dose can make the poison. The ethnobotany of daturas includes:

  • Painkiller (Aztecs);
  • Ritual zombificiation (Caribbean peoples);
  • Creation mythology (Chumash peoples);
  • Sacred visions (various peoples); and
  • Treatment of bruises and broken bones, as a poultice (various peoples).

Datura, along with other poison plants may also be a key component of our folklore that witches ride on brooms. But I’ll let you google that yourself.

Datura seedpod. Image from: Wikimedia Commons

Although datura is a poison plant, and perhaps you’re feeling some healthy wariness about it, it’s also important to remember that other animals may rely on it, and that it has co-evolved with certain pollinators to provide a food source at a time of day when fewer food sources are available.

If you’re curious if it’s growing near you, take a walk this evening, or tonight, or tomorrow morning and take a look. Its large blossoms are distinctive, and it’s a good way to get an appreciation of what other things flower in your region during these hours. Plus, since it’s National Pollinator Week, you’ll have the opportunity to go seek out the pollinators that live in your community.

Leave a comment

Soil as Iowa’s Heart of Agriculture

By Liz Clift

Iowa became part of the heart of American agriculture, due to the rich—and thick—topsoil it contained as white settlers moved across the plains. Iowa’s nutrient-dense is, in part, due to Iowa’s placement between the Missouri and the Mississippi Rivers, which form the majority of the eastern and western borders of the state. The floodplains from these rivers built up stores of nutrients, as did the history of large grazing herbivores that would have once dominated the plains, including bison, elk, deer, and even mastodons.

Unfortunately, that topsoil is disappearing. In the 1850s, Iowa had 14-16 inches of top soil; as of 2011, it had about half that. In 2014, parts of Iowa lost 15 million tons of topsoil due to erosion caused by storms.  The remaining soil is being stripped of nutrients, due to monocropping, which over time, depletes certain nutrients from the soil. Even when fields are left fallow or with a cover crop for a season or two, the nutrients are not necessarily returned to the soil.

There’s a joke I heard shortly after I moved to Iowa in the mid-aughts:

Person 1: Have you seen the four views of Iowa?

Person 2: The four views of Iowa?

Person 1: Yeah. Corn on the left, [soy] beans on the right. Beans on the left, corn on the right. Beans on the left, beans on the right. Corn on the left, corn on the right.

During the growing season, that’s pretty much true.

And it means that most people don’t understand how much natural beauty Iowa once had—and still has. The prairie plants that historically grew in the area are notable for their long root systems. These root systems not only helped stabilize the soil and retain moisture (or get to moisture during drought years)—the roots also helped prevent soil compaction and drew nutrients further beneath the surface of the soil toward the top, making these nutrients more available for plants with shallower root systems, and younger plants.

Prairie Roots. Source: Wikimedia Commons.

There are only isolated prairies now, many restored, some historic. Some farmers are moving toward more sustainable, or even regenerative, agricultural practices. If you’re driving or biking across Iowa’s rolling hills, you might find yourself admiring a polyculture farm that includes nut trees, fruit-berry bushes, and row crops, with ducks or chickens roaming about. You might find yourself alongside someone’s land that’s been put into the Conservation Reserve Program (CRP), which has historically paid farmers to remove land from agricultural production and plant species that will improve functionality.

Herbert Hoover National Historic Site, in Iowa. Source: NPS.

Of course, in Iowa (and elsewhere), there is a lot of focus on what agricultural practitioners—which I’ll classify as everyone from conventional farmers through prairie restorationists—are getting wrong (or right). Who is getting what wrong or right, in many cases, appears to be dependent on what, specifically, any individual’s priorities are.

As we think about what’s going right or wrong, we must also remember that we have made major changes to the way the Midwest looks—including the use of agricultural tiles that effectively keep the land from becoming swampy, the removal or extinction of large herbivores, controlling of fires, the decimation of native plant species, and channelizing streams and rivers. Some of these things are more easily remedied than others.

Loess Hills, at Iowa Prairie Conference. Photo Credit: Liz Clift

Great Ecology is working to reconnect an Iowa stream with its floodplain, which will include some native prairie restoration. There are prairie management activities, which may include prairie burns, meant to replicate some of the more natural processes that enable tallgrass prairies to survive. A prairie conference occurs each year in the Loess Hills (this year is focused on restoration, reconstruction, and protection). Certain agricultural practices, including CRP, facilitate the rebuilding of the soil and its nutrients. Some individuals are transitioning bluegrass lawns into native grasses.

And these are just a handful of the activities that could work, or are working, to maintain or improve soil health.

 

Leave a comment

Hands On Erosion

By Liz Clift

Editor’s Note: This post provides a hands-on experiment you can do with children to help them understand how erosion and floodplains work to re-distribute nutrients, especially in flood events. You may want to couple this with reading news reports about floods (new or old) for older children, or with a visit to a local brook, creek, stream, or river to try and identify high (or low) water indicators, such as damage to trees, bank erosion, detritus or debris from previous floods, or to observe how or if the bank has been stabilized through placement of riprap or vegetation.

Years ago, I lived near a pond. During heavy rains, it overtopped its banks, crept toward the nearby playground, and over a walking trail. It would back up into its inlet, which was lined with riprap and willows. During these rains, it seemed impossible that when the waters receded the fish and other animals that lived in the pond would retreat as the water dropped.

But of course, for the most part, the fish, turtles, crustaceans, and other animals retreated as the water levels returned to normal. The flood waters would leave detritus—dead grass, small animals tangled up in the summer clots of algae that snagged on the blue grass that surrounded most of the pond, decomposing leaves—and nutrient-rich muck. No one ever did anything about the detritus. Sometimes geese or ducks would pick at it, but for the most part, it decomposed along the upper banks of the pond.

This is similar to what happens when other bodies of waters, such as rivers, flood—and part of what has made flood plains historically beneficial places for agriculture. The flood waters deposit nutrient-dense material onto the flood plains, and over time, these materials build up.

Modified fluvial plain, from a Prentice Hall image by an unknown artist

You can replicate this for children in your life several different ways. One way is with andwich cookies and a milk (not chocolate) of your choice. You’ll need at least one sandwich cookie for each person who is participating in the experiment, a small cup of milk for each participant, and a shallow-bottomed bowl or a plate with fairly high edges for each participant.

Start out by placing the sandwich cookie(s) at the bottom of bowl on one side. Replicate erosion by slowly dribbling milk over the sandwich cookie and observing what happens. You might ask the children if they notice the milk turning colors. You might ask if they notice small crumbs from the sandwich cookie being carried away.

Ask the children to observe what happens as the sandwich cookies continue to soften. Does the erosion speed up or slow down? What happens if you add more milk?

They should see the sandwich cookie “eroding.” They should notice that the crumbs follow a particular pattern (the exact results will depend on the bowl or plate you’re using).

Ask the children to pour more milk in to represent a flood. How does this change the distribution of the crumbs? What happens to the sandwich cookie?

You can ask children to use a straw to gently suck up some of the milk (some crumbs will come too, and that’s okay). This will allow them to better see how the crumbs are distributed.

You can repeat the experiment using sandwich cookies that are pre-crumbled and see how that changes things.

You can also do this with other cookies, based on dietary needs or preferences. You might do it with some potting soil and water on a cookie sheet or in the garden. The goal is to help children engage in ecological processes, so that they can better understand not only what they see in the natural world—but so that they might grow to care about it.

You can also incorporate landscape architecture or engineering (does arranging the sandwich cookies or soil in a different way change what happens when you add milk/water? How can you slow erosion through design? Can you alter patterns of deposition?

Give it a try. Get dirty.

Leave a comment

2017 Waterfront Alliance Conference Round-Up

By Michael Kaminski

Last week Great Ecology staff boarded a yacht to attend the 2017 Waterfront Conference along New York City’s Hudson Riverfront. The annual event is hosted by the NYC-based non-profit Waterfront Alliance and features a variety of talks and panel discussions. This year’s topics ranged from how current national politics may impact our local waterways and waterfronts, measuring the success of mega projects aimed at restoring New York City’s degraded waterways and strengthening its coastlines, and even looking at whether investments in offshore wind energy benefit the health of the environment and harbor.

The day’s highlight was a speech by New York City’s Mayor Bill de Blasio, in which he regarded New York City’s 520 miles of coastline–longer than the coastlines of Miami, Boston, Los Angeles, and San Francisco combined–as one of the City’s most valuable assets. He acknowledged years of neglect and poor urban development policy that have led to large portions of the waterfront being inaccessible and cut off from the public. For decades, mayoral administrations have dreamed about a continuous and unbroken public greenbelt around the perimeter of Manhattan. In an effort to make this dream a reality, de Blasio reiterated his recent April 26 announcement that the City has pledged $100 million to revitalize a major stretch of Manhattan’s waterfront along the East River between 41st and 61st Streets.

To measure the quality of waterfront development, including future efforts stemming from the Mayor’s pledge, Waterfront Alliance developed Waterfront Edge Development Guidelines (WEDG), a tool to assess exemplary waterfront planning and design in the New York metropolitan area. WEDG, now in its second year, is doing for the waterfront what LEED has done for buildings; the program formalizes a set of best practices and a voluntary ratings system for waterfront projects that results in more access, better ecology, and increased resiliency amidst the growing threats posed by climate change.

Great Ecology has been providing guidance throughout the advancement of this cutting-edge tool by serving on the WEDG advisory committee. We look forward to watching the WEDG program grow as we all strive for a more resilient New York waterfront that provides valuable ecological habitat and access for all.

Leave a comment

Attracting Monarch Butterflies: Or, Which Milkweed is the Right Choice?

By: Liz Clift

Milkweed is sometimes considered a noxious weed, because its propagates readily – each seedpod contains hundreds of seeds. As such, it has been discouraged from growing on a variety of landscapes. However, monarch butterflies (Danaus plexippus) rely on milkweed (Asclepias spp.) to reproduce – milkweed is the sole source of food for their larvae (adults can sip nectar from a variety of wildflowers). In recent decades, there has been a lot of campaigning to encourage people to plant milkweed in an attempt to aid monarch recovery.

And based on acres occupied in the Mexican forest where monarchs overwinter, their numbers are on the rise. This past winter, they occupied 10 acres of forest, compared to their record low number of 1.66 acres in 2013.

However, monarchs still face problems, and one of those problems has to do with the type of milkweed people have been planting. Until fairly recently, the primary milkweed commercially available in the United States was tropical milkweed (Asclepias curassavica), which in warmer southern climates doesn’t die back during the winter.

Monarch Butterfly on Tropical Milkweed. Photo Credit: Tony Fischer Photography from Flickr Media Commons.

Since tropical milkweed doesn’t die off, some monarchs aren’t completing their migration, preferring instead to stay in the southern areas of some southern states, where tropical milkweed can bloom year-round.

So, some monarchs aren’t flying as far. No big deal, right?

If only that was the case.

Unfortunately, milkweed can also host a protozoan parasite Ophryocystis elektroscirrha (OE) which infects monarchs and queen butterflies (Danaus gilippus). The long and the short of it goes like this:

An adult monarch (or queen butterfly) carrying OE spores lays its eggs on a milkweed plant and in the process scatters those dormant spores on the eggs and the leaves of the milkweed plant. Larva consume their egg casing as they hatch, and may pick up OE that way, or through consuming the infected milkweed plant.

Once the dormant spores are in the monarch larva’s digestive tract, enzymes break the spores open and release the parasite. The parasites move into the intestinal walls and begin to reproduce asexually – and each OE parent cell can reproduce many times.

The majority of the damage to the butterfly happens during its time in the chrysalis. About three days before the adult emerges, OE spores begin to form and show up as dark patches that can be seen from the outside layer of the chrysalis. The infected adult butterfly may be too weak to emerge from the chrysalis, or to cling to the chrysalis while their wings fully expand. Those that survive are often smaller than healthy monarchs, and have shorter forewings, and they carry the spores on their abdomens. The cycle repeats.

OE also damages the outer layer of a monarch’s abdomen, which causes the butterflies to dry out and lose weight faster than normal. This is especially problematic for the butterflies when there are shortages of water or nectar.

The cyclical nature of this parasitic infection is exacerbated by the fact that when a milkweed plant doesn’t die off (or get regularly trimmed down) in the winter, OE can continue to survive on it. If a milkweed plant is killed off over the winter, the returning monarchs (at least those that are uninfected) have an improved chance of being able to produce eggs that will grow into healthy adults.

In recent years, more milkweed plants have become commercially available, and many organizations dedicated to saving the monarch provide resources for people to help them select milkweeds that are regionally appropriate and also appropriate for a particular set of growing conditions. This effort will, hopefully, curb OE infections in monarchs.

Swamp Milkweed (Asclepias incarnata). Photo from Tom Potterfield, Flickr Creative Commons.

Aside from planting regionally appropriate species of milkweed, how else can people help save the monarch?

There are also opportunities for citizen scientists to help collect data on infection rates in monarchs. Testing for OE spores is conducted by gently pressing a piece of clear tape to the abdomen of a monarch. The tape sample is then sent to a lab, where it is evaluated for spores (and total spore count) under light or electron microscopes.

This research helps scientists better understand not only what percentage of the monarch population is infected with OE, but how OE spreads through a population, or a region. This may lead to advances in how OE is treated—or how the message about the importance of planting native milkweed is spread.

 

Leave a comment

Native Wildflowers are Critical for Pollinators

By: Liz Clift

It’s National Wildflower Week—and from a restoration ecology perspective, it’s important to realize that wildflowers aren’t the same everywhere. If you decide to plant wildflowers in your yard, try to stay away from wildflower seed mixes, as these can contain varieties that aren’t native to your area (and may even be considered invasive!)

Instead, plant native wildflowers, which are adapted to the climate in your region, and which have co-evolved with native pollinators. The co-evolution aspect is important—especially for insect pollinators*, whose tongue lengths may be specifically adapted for particular types of flowers. A bee with a short tongue, for instance, can’t acquire what it needs from a flower with a longer corolla, such as Columbine (the state flower of Colorado).

It’s tempting to think then that a long tongue is better—or that just planting flowers with shorter corollas (yarrow, for instance) is better. But, long tongues are difficult to get into shorter flowers.

Bee tongue. Photo Credit: Ryan Abel through Flickr Media Commons.

And that’s not all. Some pollinators like a “platform” to land on, while others will hover or burrow into the flower. Some pollinators are more likely to be out midday, while others are crepuscular or even nocturnal. A variety of native wildflower species will help create preferred forage for a variety of pollinators—and will likely create a bloom pattern that lasts over several months, rather than peaking at one particular point and then leaving pollinators without additional sources of food.

In some cases, planting a non-native species of a plant (like milkweed, Asclepias spp.) can actually be detrimental. Milkweed is the exclusive host plant for monarch (Danaus plexippus) caterpillars – but depending on the type you plant, it may not die back enough to kill off the protozoan parasite Ophryocystis elektroschirrha (OE). OE, when ingested by monarch caterpillars, causes the adult butterfly to be much weaker than their healthy counterparts—and carry spores to spread to other milkweed plants.

This can result in a decline of monarchs.

Fortunately, there are many native species of milkweed you can plant, which are adapted for your region—though getting your hands on seeds for these varieties may be a little more difficult.

Swamp Milkweed (Asclepias incarnata). Photo from Tom Potterfield, Flickr Creative Commons.

If you’re not especially familiar with the native plants in your area—or have suddenly realized that your “wildflower mix” came from a company in the northeast and you live in Central California—there are a variety of resources that can help you focus your wildflower efforts to your region.

Many states have Native Plant Societies as well as university extension offices (like this one for Colorado and this one for Minnesota) that can help guide you toward an appropriate wildflower mix. The Xerces Society also provides lists of plant species by region. These easy-to-read lists note the bloom period (early, mid-late, etc.), common name, scientific name, flower color, maximum height, water needs, and additional notes that include what it attracts, shade tolerance, etc.

The National Wildlife Foundation has a Native Plant Finder (in beta) that allows you to search native plants by zip code and also spits out which butterfly and moth pollinators use particular plants as a host plant.

If you’re working on a restoration project, and are considering how to better include native pollinator habitat as part of your design, please contact us. Great Ecology has developed pollinator-focused plant palettes and landscape designs for a variety of projects, including one for a BASF site in New Jersey.

*There is also evidence that this makes a difference for other pollinators, including bats.

Prickly Poppy (Argemone polyanthemos), Bar Lake State Park, Colorado, October 4, 2014. From Wikimedia Commons.

Leave a comment

If a Tree Falls in the Forest, Did a Foley Artist Create the Sound?

By: Liz Clift

If you read this blog regularly, you know I listen to a lot of podcasts. Recently, 99% Invisible ran an episode called “Sounds Natural,” focused on the ways that the nature documentaries that we watch might be altered from real reality. For instance, there’s the now-infamous scene in Disney’s 1958 documentary White Wilderness that shows lemmings plunging from a cliff—which has led to a lot of lore and sayings about lemmings. As you may be familiar though, the entire scene was staged.

Lemming emerging from a den

As you might have guessed by the titled of this podcast episode, the majority of the episode examined the “natural” sounds in nature documentaries.  These sounds are often created by foley artists, and 99% Invisible focused on a foley artist named Richard Hinton. An animal walking through snow, for example, might be created by squeezing a bag full of powdered custard. An elephant’s footfalls, although we frequently hear them on nature documentaries, are actually nearly silent.

Silence, at least to our human ears, is often the sound we’d actually hear if an animal was approaching—especially in the snow—or perhaps, in other climes, the sound of leaves rustling, a chuff of breath, a sudden cessation of bird calls, or a cacophony.

Wolf moving through snow

The link above will take you not only to the podcast episode, but an accompanying article (listen to the podcast first), along with several videos that show a foley artist in the midst of creating sounds to go along with the scene. You can watch the full 13-minute film of one of those clips here.

But what about animal calls, you might ask. The podcast explains this too—and it’s more involved than you might initially expect.

Foley artists exist not just for documentaries, but for pretty much everything you watch (I can think of a few that use music—often symphonic—in place of the sounds we’d normally associate with nature, or which intentionally use silence throughout).

Foley artist at Vancouver Film School

Confession time: Foley artist is a career I very briefly considered at some younger point in my life, after watching some newsy television program that featured one. According to John Roesch, a master foley artist, there are more astronauts than foley artists. The job is difficult, requires thinking outside the box about every day objects, and very precise timing.

So, a question for you: what do bird wings sound like up close? From farther away? What sound does a deer make when it approaches you in the woods? Or in a prairie? What would a robot’s feet sound like? Exactly what sound does a horses hooves make on a race track? In a meadow? In the snow? Now, watch a documentary or a favorite film, and consider the work that went into making all the sounds that help keep you in the world created for you on screen.

Horse hooves in light snow

Leave a comment

A Shout Out for Science

Great Ecology’s Marlene Tyner-Valencourt in the thick of the crowd.

Women in Science! This PhD student’s sign encouraged everyone to ask about her research.

 

 

 

 

 

 

 

 

By: Ashley Tuggle

Ecologists and ectobiologists, meteorologists and meterologists, geologists and geochemists, biomedical researchers and mechanical engineers, everything in between, and regular science enthusiasts came out in force on April 22nd in support of the March for Science. Great Ecology’s own intrepid crew in San Diego struck out for the day to march in support of scientific research and science education, revel in the diversity of our local community, and send a message.

What do we want?

Science!

When do we want it?
After rigorous peer review!

What can you expect from a bunch of nerds?

Great Ecology’s Emily Callahan poses after the march with Hunter, a hound for science!

The March for Science was a nationwide march to celebrate science, bring awareness to the need for basic scientific research in all areas, and promote government policy and action rooted in sound science. While the march in Washington, D.C. was the main march, thousands of people turned out for the San Diego march where the pre-march rally included talks from Scripps Institute professors Ralph Keeling, PhD and Lynne Talley, PhD on the impacts of climate change and rising sea levels, a biomedical PhD student who went into his field in the hopes of finding a cure for his daughter’s blindness, and three students from local schools who had won their local science fairs. The youngest of the winners, Ryan Alfonso, summed things up nicely: Even if it’s something small, science can matter. His research into a simple color change for giant balls placed in California Reservoirs to help reduce evaporation is an important step in increasing the efficiency of this effort and conserving a precious resource in the state.

The scientific method is designed to help us answer questions that can make a very real impact the local, regional, and global level.

Great Ecology’s Director of Ecology, Nick Buhbe, poses with his sign for the march

By the end of the march, the themes of the day were clear:

 

  • Science is for everyone no matter how old or young you are;
  • Science saves lives and makes the world a better place (“Remember that time you had polio? Me neither! Thanks, Science!”); and
  • Scientists and science enthusiasts are ready to march in favor of science education and public funding for the research that makes so many amazing technologies, cures, and advances possible in the world today.

The People’s Climate March (started in 2014) is next on the spring schedule. Whether it’s because you’re interested in adaptation under our changing climate, feel strongly about environmental justice issues related to climate, or because you find the science of climate change fascinating in its own right, there’s a reason to find a march in your city on Saturday, April 29th. We all live on one planet and there’s no escaping our climate, whatever it happens to be. Research into understanding climate shifts and climate adaptation will be keys in the coming decades to protecting our water, our heath, our food, and our way of life.

So save a time slot on Saturday morning to march and let everyone know that research into our climate is vital for our local and national community. We all have to live here. Let’s fund science to make it a little easier and a lot better!

 

“I am for encouraging the progress of science in all its branches.” – Thomas Jefferson (Jan 26, 1799)

 

Post-march, from left to right, Great Ecology’s Marlene Tyner-Valencourt, Nick Buhbe, and Ashley Tuggle

 

 

Leave a comment

Teaching Watershed Science to Young People

By: Liz Clift

I used to teach an introductory version of watershed science to school children. Depending on how much time I had with these young people, this might include diverse topics such as where our water came from, the water cycle, and/or the movement of pollutants and/or particulates through a system.

In the summer camp version—which meant I had them for a full week instead of a maximum of 90 minutes like I had them during the school year—the curriculum included an exploration of the water cycle that involved several hands-on experiments, giving students the opportunity to explore how sediment falls out of water, to attempt to use different household materials to filter out visible particulates and pollutants, pH testing, examining water from different sources under a microscope and more, with the curriculum modified depending on the age of participants.

At the end of the week, we’d pull out a scale model version of our local watershed. It came with props that were part of our watershed, including people, animals (livestock and wild), cars, train tracks, houses, and lots of trees. Sometimes I’d pull out some clay for the students to use to hold certain things (houses, trees) in place—which was an impactful way to show how landslides could happen because of a soaking rain.

Watershed Resource Regions, from USGS

We’d go over how to replicate a gentle rain, a soaking rain, a downpour using the tools provided*, and then the participants would get to work (the model included a drain that I’d position over a bucket, and hope the bucket didn’t get knocked aside, or worse, over!). This allowed them to see how different amounts of rainfall could alter our watershed. After a while, I’d introduce a pollutant (in the form of food coloring). Sometimes we’d decide as a group to put it in a particular place, and wait to see when the water reached it. Other times, I’d introduce it without fanfare at points in the watershed and ask the young people to describe what was happening.

Afterward, we’d talk about what they’d observed about types of rainfall, about flooding, about what places tended to fill with water first and why, about the introduction of pollutants. We’d talk about ways we could individually help limit pollution in our watershed, and about any feelings the activity brought up. If we had time, they were then free to return to any activity we’d done over the week, including the scale model watershed (always the most popular).

Helping young people understand the dynamics of a watershed—and for that matter, helping them conceptualize their watershed—can be an important component of making science and conservation tangible. It can be especially useful in arid environments where most of the water comes from snowmelt, as it was in the place I taught this class (replicated with crushed ice, when time allowed).

A few years later, I taught a similar class in another state in a three-week long summer camp. I didn’t have a scale model of the watershed. Instead, I had the ability to take the young people on field trips. We did many of the same activities, interspersed with exploring our watershed.

That camp class, of all the ones offered, was the one the young people kept clamoring to come back to—not because they had any special affection for me, but because we did things like look at pond water, the backbone of a catfish, and sand under a microscope; performed pH tests; watched tadpoles develop; and made bracelets representing the water cycle. For field trips, we traveled to a nearby glacier, to a eutrophic creek, to a local pond, to an “Aqua Golf” course, to a neighborhood waterpark. With the oldest group of participants (rising 5th and 6th graders), I had long conversations about water waste and conservation that the participants brought up among themselves and then to me.

Some of these oldest campers did additional research on their own, and taught back to their families. In this way, they became watershed ambassadors, which is an important step to encouraging community-scale conservation and restoration support.

*Misters, pipettes, funnels, small measuring cups, etc.

Leave a comment

Soil Health: Shifting the Carbon-Nitrogen Balance (Part I)

By Liz Clift

Whether you’re adding carbon-rich materials to soil for ecological restoration purposes, trying to figure out how to make your compost more efficient, or perhaps figuring out why last year’s chop-and-drop mulch in your garden isn’t breaking down the way you expected it to, it’s important to understand carbon to nitrogen ratios (C:N).

Carbon and nitrogen are both necessary for plant growth—and an imbalance can lead to slower or stunted growth, or make an area more hospitable to certain types of weeds. In addition, the relative levels of carbon or nitrogen on a site impact how quickly mulch—including grass clippings, leaves, crop residue, etc.—decomposes.

If you’ve never spent much time in prairies, here’s a sampling of plants and birds

How does this factor into restoration ecology?

One of the hurdles of restoration ecology is what to do with pioneer species (aka weeds) we don’t want colonizing a piece of land. Vigorous weed growth can be a sign of high levels of nitrogen in the soil, relative to carbon. By increasing the levels of carbon in the soil, it’s possible to effectively manage nitrophilic weeds (such as cheatgrass, Bromus tectorum), even with a reduced (or no!) use of herbicides.

By focusing on increased soil health through increased carbon supplementation, it is possible to shift the competitive balance. Increasing soil carbon mimics later successional stages of soil ecology, which generally favors native plant growth. Often, native plants can more easily establish and thrive in low nitrogen environments, which allows them to begin the process of out competing nitrogen-loving weed species—some of which produce many more seeds than native species.

Sawdust and wood chips, when used as an incorporated soil amendment, provide opportunities to increase carbon in the soil, as do fire-regimens that allow for controlled burns of prairies or woodlands. Controlled burns, unlike wildfires, generally burn at a lower temperature, which leaves the microbiota of the soil intact. Although controlled burns are not always understood as a management technique by the public at large, it’s critical that we remember fire used to be a standard part of most ecosystems.

If we face public resistance to incorporating woodchips, sawdust, or a fire-regimen (or other forms of carbon supplementation), we will do well to remember that this is an opportunity to talk with people about soil health and why we’re doing what we’re doing. For those of us who work in grasslands, it’s especially important to note that increasing carbon in the soil has been shown to be effective at facilitating prairie restoration.

Great Ecology employees have successfully applied carbon supplementation as part of oil pad reclamation, and are currently applying the process at some Denver-area park sites as a means to reduce weed species proliferation and reduce operations and maintenance costs.

Part II of this blog will cover the role of carbon and nitrogen in agricultural restoration and compost.

Leave a comment

Older Posts »