Home / Page 2

Blog


Native Wildflowers are Critical for Pollinators

By: Liz Clift

It’s National Wildflower Week—and from a restoration ecology perspective, it’s important to realize that wildflowers aren’t the same everywhere. If you decide to plant wildflowers in your yard, try to stay away from wildflower seed mixes, as these can contain varieties that aren’t native to your area (and may even be considered invasive!)

Instead, plant native wildflowers, which are adapted to the climate in your region, and which have co-evolved with native pollinators. The co-evolution aspect is important—especially for insect pollinators*, whose tongue lengths may be specifically adapted for particular types of flowers. A bee with a short tongue, for instance, can’t acquire what it needs from a flower with a longer corolla, such as Columbine (the state flower of Colorado).

It’s tempting to think then that a long tongue is better—or that just planting flowers with shorter corollas (yarrow, for instance) is better. But, long tongues are difficult to get into shorter flowers.

Bee tongue. Photo Credit: Ryan Abel through Flickr Media Commons.

And that’s not all. Some pollinators like a “platform” to land on, while others will hover or burrow into the flower. Some pollinators are more likely to be out midday, while others are crepuscular or even nocturnal. A variety of native wildflower species will help create preferred forage for a variety of pollinators—and will likely create a bloom pattern that lasts over several months, rather than peaking at one particular point and then leaving pollinators without additional sources of food.

In some cases, planting a non-native species of a plant (like milkweed, Asclepias spp.) can actually be detrimental. Milkweed is the exclusive host plant for monarch (Danaus plexippus) caterpillars – but depending on the type you plant, it may not die back enough to kill off the protozoan parasite Ophryocystis elektroschirrha (OE). OE, when ingested by monarch caterpillars, causes the adult butterfly to be much weaker than their healthy counterparts—and carry spores to spread to other milkweed plants.

This can result in a decline of monarchs.

Fortunately, there are many native species of milkweed you can plant, which are adapted for your region—though getting your hands on seeds for these varieties may be a little more difficult.

Swamp Milkweed (Asclepias incarnata). Photo from Tom Potterfield, Flickr Creative Commons.

If you’re not especially familiar with the native plants in your area—or have suddenly realized that your “wildflower mix” came from a company in the northeast and you live in Central California—there are a variety of resources that can help you focus your wildflower efforts to your region.

Many states have Native Plant Societies as well as university extension offices (like this one for Colorado and this one for Minnesota) that can help guide you toward an appropriate wildflower mix. The Xerces Society also provides lists of plant species by region. These easy-to-read lists note the bloom period (early, mid-late, etc.), common name, scientific name, flower color, maximum height, water needs, and additional notes that include what it attracts, shade tolerance, etc.

The National Wildlife Foundation has a Native Plant Finder (in beta) that allows you to search native plants by zip code and also spits out which butterfly and moth pollinators use particular plants as a host plant.

If you’re working on a restoration project, and are considering how to better include native pollinator habitat as part of your design, please contact us. Great Ecology has developed pollinator-focused plant palettes and landscape designs for a variety of projects, including one for a BASF site in New Jersey.

*There is also evidence that this makes a difference for other pollinators, including bats.

Prickly Poppy (Argemone polyanthemos), Bar Lake State Park, Colorado, October 4, 2014. From Wikimedia Commons.

Leave a comment

If a Tree Falls in the Forest, Did a Foley Artist Create the Sound?

By: Liz Clift

If you read this blog regularly, you know I listen to a lot of podcasts. Recently, 99% Invisible ran an episode called “Sounds Natural,” focused on the ways that the nature documentaries that we watch might be altered from real reality. For instance, there’s the now-infamous scene in Disney’s 1958 documentary White Wilderness that shows lemmings plunging from a cliff—which has led to a lot of lore and sayings about lemmings. As you may be familiar though, the entire scene was staged.

Lemming emerging from a den

As you might have guessed by the titled of this podcast episode, the majority of the episode examined the “natural” sounds in nature documentaries.  These sounds are often created by foley artists, and 99% Invisible focused on a foley artist named Richard Hinton. An animal walking through snow, for example, might be created by squeezing a bag full of powdered custard. An elephant’s footfalls, although we frequently hear them on nature documentaries, are actually nearly silent.

Silence, at least to our human ears, is often the sound we’d actually hear if an animal was approaching—especially in the snow—or perhaps, in other climes, the sound of leaves rustling, a chuff of breath, a sudden cessation of bird calls, or a cacophony.

Wolf moving through snow

The link above will take you not only to the podcast episode, but an accompanying article (listen to the podcast first), along with several videos that show a foley artist in the midst of creating sounds to go along with the scene. You can watch the full 13-minute film of one of those clips here.

But what about animal calls, you might ask. The podcast explains this too—and it’s more involved than you might initially expect.

Foley artists exist not just for documentaries, but for pretty much everything you watch (I can think of a few that use music—often symphonic—in place of the sounds we’d normally associate with nature, or which intentionally use silence throughout).

Foley artist at Vancouver Film School

Confession time: Foley artist is a career I very briefly considered at some younger point in my life, after watching some newsy television program that featured one. According to John Roesch, a master foley artist, there are more astronauts than foley artists. The job is difficult, requires thinking outside the box about every day objects, and very precise timing.

So, a question for you: what do bird wings sound like up close? From farther away? What sound does a deer make when it approaches you in the woods? Or in a prairie? What would a robot’s feet sound like? Exactly what sound does a horses hooves make on a race track? In a meadow? In the snow? Now, watch a documentary or a favorite film, and consider the work that went into making all the sounds that help keep you in the world created for you on screen.

Horse hooves in light snow

Leave a comment

A Shout Out for Science

Great Ecology’s Marlene Tyner-Valencourt in the thick of the crowd.

Women in Science! This PhD student’s sign encouraged everyone to ask about her research.

 

 

 

 

 

 

 

 

By: Ashley Tuggle

Ecologists and ectobiologists, meteorologists and meterologists, geologists and geochemists, biomedical researchers and mechanical engineers, everything in between, and regular science enthusiasts came out in force on April 22nd in support of the March for Science. Great Ecology’s own intrepid crew in San Diego struck out for the day to march in support of scientific research and science education, revel in the diversity of our local community, and send a message.

What do we want?

Science!

When do we want it?
After rigorous peer review!

What can you expect from a bunch of nerds?

Great Ecology’s Emily Callahan poses after the march with Hunter, a hound for science!

The March for Science was a nationwide march to celebrate science, bring awareness to the need for basic scientific research in all areas, and promote government policy and action rooted in sound science. While the march in Washington, D.C. was the main march, thousands of people turned out for the San Diego march where the pre-march rally included talks from Scripps Institute professors Ralph Keeling, PhD and Lynne Talley, PhD on the impacts of climate change and rising sea levels, a biomedical PhD student who went into his field in the hopes of finding a cure for his daughter’s blindness, and three students from local schools who had won their local science fairs. The youngest of the winners, Ryan Alfonso, summed things up nicely: Even if it’s something small, science can matter. His research into a simple color change for giant balls placed in California Reservoirs to help reduce evaporation is an important step in increasing the efficiency of this effort and conserving a precious resource in the state.

The scientific method is designed to help us answer questions that can make a very real impact the local, regional, and global level.

Great Ecology’s Director of Ecology, Nick Buhbe, poses with his sign for the march

By the end of the march, the themes of the day were clear:

 

  • Science is for everyone no matter how old or young you are;
  • Science saves lives and makes the world a better place (“Remember that time you had polio? Me neither! Thanks, Science!”); and
  • Scientists and science enthusiasts are ready to march in favor of science education and public funding for the research that makes so many amazing technologies, cures, and advances possible in the world today.

The People’s Climate March (started in 2014) is next on the spring schedule. Whether it’s because you’re interested in adaptation under our changing climate, feel strongly about environmental justice issues related to climate, or because you find the science of climate change fascinating in its own right, there’s a reason to find a march in your city on Saturday, April 29th. We all live on one planet and there’s no escaping our climate, whatever it happens to be. Research into understanding climate shifts and climate adaptation will be keys in the coming decades to protecting our water, our heath, our food, and our way of life.

So save a time slot on Saturday morning to march and let everyone know that research into our climate is vital for our local and national community. We all have to live here. Let’s fund science to make it a little easier and a lot better!

 

“I am for encouraging the progress of science in all its branches.” – Thomas Jefferson (Jan 26, 1799)

 

Post-march, from left to right, Great Ecology’s Marlene Tyner-Valencourt, Nick Buhbe, and Ashley Tuggle

 

 

Leave a comment

Teaching Watershed Science to Young People

By: Liz Clift

I used to teach an introductory version of watershed science to school children. Depending on how much time I had with these young people, this might include diverse topics such as where our water came from, the water cycle, and/or the movement of pollutants and/or particulates through a system.

In the summer camp version—which meant I had them for a full week instead of a maximum of 90 minutes like I had them during the school year—the curriculum included an exploration of the water cycle that involved several hands-on experiments, giving students the opportunity to explore how sediment falls out of water, to attempt to use different household materials to filter out visible particulates and pollutants, pH testing, examining water from different sources under a microscope and more, with the curriculum modified depending on the age of participants.

At the end of the week, we’d pull out a scale model version of our local watershed. It came with props that were part of our watershed, including people, animals (livestock and wild), cars, train tracks, houses, and lots of trees. Sometimes I’d pull out some clay for the students to use to hold certain things (houses, trees) in place—which was an impactful way to show how landslides could happen because of a soaking rain.

Watershed Resource Regions, from USGS

We’d go over how to replicate a gentle rain, a soaking rain, a downpour using the tools provided*, and then the participants would get to work (the model included a drain that I’d position over a bucket, and hope the bucket didn’t get knocked aside, or worse, over!). This allowed them to see how different amounts of rainfall could alter our watershed. After a while, I’d introduce a pollutant (in the form of food coloring). Sometimes we’d decide as a group to put it in a particular place, and wait to see when the water reached it. Other times, I’d introduce it without fanfare at points in the watershed and ask the young people to describe what was happening.

Afterward, we’d talk about what they’d observed about types of rainfall, about flooding, about what places tended to fill with water first and why, about the introduction of pollutants. We’d talk about ways we could individually help limit pollution in our watershed, and about any feelings the activity brought up. If we had time, they were then free to return to any activity we’d done over the week, including the scale model watershed (always the most popular).

Helping young people understand the dynamics of a watershed—and for that matter, helping them conceptualize their watershed—can be an important component of making science and conservation tangible. It can be especially useful in arid environments where most of the water comes from snowmelt, as it was in the place I taught this class (replicated with crushed ice, when time allowed).

A few years later, I taught a similar class in another state in a three-week long summer camp. I didn’t have a scale model of the watershed. Instead, I had the ability to take the young people on field trips. We did many of the same activities, interspersed with exploring our watershed.

That camp class, of all the ones offered, was the one the young people kept clamoring to come back to—not because they had any special affection for me, but because we did things like look at pond water, the backbone of a catfish, and sand under a microscope; performed pH tests; watched tadpoles develop; and made bracelets representing the water cycle. For field trips, we traveled to a nearby glacier, to a eutrophic creek, to a local pond, to an “Aqua Golf” course, to a neighborhood waterpark. With the oldest group of participants (rising 5th and 6th graders), I had long conversations about water waste and conservation that the participants brought up among themselves and then to me.

Some of these oldest campers did additional research on their own, and taught back to their families. In this way, they became watershed ambassadors, which is an important step to encouraging community-scale conservation and restoration support.

*Misters, pipettes, funnels, small measuring cups, etc.

Leave a comment

Soil Health: Shifting the Carbon-Nitrogen Balance (Part I)

By Liz Clift

Whether you’re adding carbon-rich materials to soil for ecological restoration purposes, trying to figure out how to make your compost more efficient, or perhaps figuring out why last year’s chop-and-drop mulch in your garden isn’t breaking down the way you expected it to, it’s important to understand carbon to nitrogen ratios (C:N).

Carbon and nitrogen are both necessary for plant growth—and an imbalance can lead to slower or stunted growth, or make an area more hospitable to certain types of weeds. In addition, the relative levels of carbon or nitrogen on a site impact how quickly mulch—including grass clippings, leaves, crop residue, etc.—decomposes.

If you’ve never spent much time in prairies, here’s a sampling of plants and birds

How does this factor into restoration ecology?

One of the hurdles of restoration ecology is what to do with pioneer species (aka weeds) we don’t want colonizing a piece of land. Vigorous weed growth can be a sign of high levels of nitrogen in the soil, relative to carbon. By increasing the levels of carbon in the soil, it’s possible to effectively manage nitrophilic weeds (such as cheatgrass, Bromus tectorum), even with a reduced (or no!) use of herbicides.

By focusing on increased soil health through increased carbon supplementation, it is possible to shift the competitive balance. Increasing soil carbon mimics later successional stages of soil ecology, which generally favors native plant growth. Often, native plants can more easily establish and thrive in low nitrogen environments, which allows them to begin the process of out competing nitrogen-loving weed species—some of which produce many more seeds than native species.

Sawdust and wood chips, when used as an incorporated soil amendment, provide opportunities to increase carbon in the soil, as do fire-regimens that allow for controlled burns of prairies or woodlands. Controlled burns, unlike wildfires, generally burn at a lower temperature, which leaves the microbiota of the soil intact. Although controlled burns are not always understood as a management technique by the public at large, it’s critical that we remember fire used to be a standard part of most ecosystems.

If we face public resistance to incorporating woodchips, sawdust, or a fire-regimen (or other forms of carbon supplementation), we will do well to remember that this is an opportunity to talk with people about soil health and why we’re doing what we’re doing. For those of us who work in grasslands, it’s especially important to note that increasing carbon in the soil has been shown to be effective at facilitating prairie restoration.

Great Ecology employees have successfully applied carbon supplementation as part of oil pad reclamation, and are currently applying the process at some Denver-area park sites as a means to reduce weed species proliferation and reduce operations and maintenance costs.

Part II of this blog will cover the role of carbon and nitrogen in agricultural restoration and compost.

Leave a comment

Conference Attendance & Presentations, Q1 2017

During the first quarter of 2017, Great Ecology employees attended a variety of conferences across the country. Were you there, and hoping to connect? Now’s the chance!

In January:

Our Director of Design, Linda Gumeny attended the New Jersey Chapter of the American Planning Association conference.

Nick Buhbe, Director of Ecology, attended the Central Dredging Association (CEDA) Conference in the Netherlands.

In March:

Multiple members of the Denver office attended the Central Rockies chapter of the Society for Ecological Restoration’s conference, where Vice President of Technical Services, Randy Mandel, gave two presentations.

Associate Ecologist, Dr. Jill McGrady presented at DecomWorld 2017 in Houston, TX.

Nick Buhbe presented at the 27th Annual International Conference on Soil, Water, Energy, and Air for the Association of Environmental Health and Sciences Foundation in San Diego, CA.

Liz Clift, Copy Editor, attended the Colorado Coalition of Land Trust’s annual conference in Denver, CO.

President & Found of Great Ecology, Dr. Mark Laska, spoke at the Law Seminars International Sixth Annual Advanced Conference on Natural Resource Damages.

Dr. Laska also attended the 46th Spring Environmental Conference of the American Bar Association in Hollywood.

 

Leave a comment

President & Founder of Great Ecology to Speak at NRD Conference in DC

Mark S. Laska, PhD, Founder & President of Great Ecology, will be presenting at the Law Seminars International Sixth Annual Advanced Conference on Natural Resource Damages in Washington, DC on March 24th at 9:30am. He will present a case study on “The Future of Restoration: Update on New Approaches for Developing the Most Effective Restoration Strategy.”  His ideas for future restoration of NRD injuries involves “banking” and upfront restoration projects drawing from his expertise in mitigation banking and recent policy developed by five federal agencies.

The conference will provide the chance to explore successes, challenges, and opportunities of the Natural Resource Damages (NRD) legal regime, including the effectiveness of NRD as a remedy for environmental damage. In addition, the conference will include information on the latest developments in NRD science and restoration, and how to prepare an NRD case for trial.

If you’re unable to make it to DC, the conference proceedings will also be available via paid webcast.

Leave a comment

Great Ecology’s Director of Ecology to Present at AEHS

Nick Buhbe, M.S., Great Ecology’s Director of Ecology, will be presenting at the 27th Annual International Conference on Soil, Water, Energy, and Air for the Association of Environmental Health and Sciences (AEHS) Foundation in San Diego, CA. The workshop, “More than a Blank Slate: Increasing Value at Cleanup Sites Through Sustainable Repurposing for Renewable Energy Production and Habitat Restoration” will be co-presented with June Yi, of Project Navigator. The workshop will explore ecologically oriented approaches to create or enhance habitat and wetland resources, incorporate reuse strategies for Brownfield sites, and identify when and where solar energy-generation facilities can be incorporated into end-uses.

Nick and June will present on Wednesday, March 22 at 7pm.

Leave a comment

After the HAR-CeRSER 2017 Conference

Last week several Great Ecology staff members attended the 2017 High Altitude Revegetation Workshop & Central Rockies Chapter of the Society for Ecological Restoration (HAR-CeRSER) Conference in Fort Collins, CO.

Great Ecology’s Vice President of Technical Services, Randy Mandel, provided two presentations: (1) an oral presentation on “The Use of Ecotypic Plant Collections for Restoration Design to Benefit Pollinator Habitat”, and (2) a poster presentation on the Colorado Water Conservation Board Restoration Plant Matrix the was compiled in response to Colorado’s 2013 Front Range Floods, as well as the closing remarks at the conference.. Other presentations included:

  • Keynote: “Can We Manage for Resilience? Making Decisions about Where and How to Restore in a Changing World” (Katharine Suding, University of Colorado, Boulder, CO)
  • Keynote: “New Natures and Mountain Landscapes” (Eric Higgs, University of Victoria, Victoria, British Columbia)
  • Keynote: “Weed-Suppressive Bacteria: A New Tool for Restoration” (Ann Kennedy, USDA, Agricultural Research Service, Pullman, WA)
  • “A Seedling-Based Approach to Aspen Restoration” (Alexander Howe, Utah State University, Logan, UT)
  • “High Elevation Mine Lands Reclamation Using Biochar” (Christopher D. Peltz, Research Services, Silverton, CO)
  • “Manipulating Cheatgrass Seed Dispersal to Benefit Restoration” (Danielle B. Johnson, Colorado Parks & Wildlife, Grand Junction, CO)
  • “Rehabilitating Aquatic Habitat in Urban Systems” (Ashley Ficke, GEI Consultants, Fort Collins, CO)
  • “The Urban Prairies Project: Pollinator Habitat Restoration and Community Engagement” (Amy C. Yarger, Butterfly Pavilion, Westminster, CO)
  • “The Southwest Seed Partnership & the Ethos of Seed Conservation” (Ella M. Samuel, Chicago Botanic Garden, Bureau of Land Management, Santa Fe, NM)

There were many additional engaging and important talks, and dozens of posters, all of which helped convey important trends, new research, and strategies for restoration success.

Great Ecology was proud to be a sponsor for this event. Great Ecology was especially proud of the students who presented their research. Congratulations to the winners of the student poster and presentation awards!

Leave a comment

Sharkwater: An Argument for Conservation

Rob_Stewart_(filmmaker)

Rob Stewart (1979-2017)

By Liz Clift

Editor’s Note: Earlier this year, we used social media to post condolences about the death of Rob Stewart (1979-2017), a marine conservationist and documentary filmmaker who died in a diving accident off the coast of Florida, at Alligator Reef. Stewart was best known for his 2006 documentary Sharkwater.

I recently watched Sharkwater, a documentary about sharks, and was immediately captivated by the beauty of the world under sea that Rob Stewart captured—as well as the devastation caused by the commercial shark fin industry.

Stewart once said, “Conservation is the preservation of human life on earth, and that, above all else, is worth fighting for.” In the course of the documentary, it’s clear that he believed this, because viewers witness some (though not all) of the challenges he faced while making the film—including risks to his life. He created Sharkwater as a way of raising awareness about sharks (and how, despite what the creators of Jaws and Sharknado might have us believe, they are not all that dangerous. In fact, you’re more likely to be killed by a vending machine than a shark.).

There’s a memorable scene where Stewart is on the ocean floor, cuddling a shark. There’s a breath-taking view of hundreds of hammerhead sharks schooling. There are also multiple scenes depicting the brutality of the shark fin industry, and statistics that will break your heart.

In the documentary, Stewart makes the compelling argument that sharks play a vital role in the survival of humankind, and life on earth as we know it. An understanding of how predators change landscapes indicate he’s probably right (think: reintroduction of wolves into Yellowstone).

Lemonshark_(2)

Lemon Shark with Remora

 

Sharks, as Stewart points out, are apex predators and have existed for millennia almost unchanged. As apex predators, they provide evolutionary pressure to fish (and are likely the reason that some fish form tight schools, much as herd animals on land evolved to tighten up to avoid predation) and help maintain fish populations at a state that can be supported by the marine ecosystem.

This in turn helps ensure that plankton, which produce the majority (estimated 70%) of the oxygen we rely on, are not overconsumed. With fewer higher level predators, primary and mid-level consumers that include a heavy diet of plankton could cause the plankton population to crash.

That would not spell good things for the planet, or for us.

Tiger Shark

Tiger Shark

When Stewart died, he was reportedly making a sequel to Sharkwater. He also made the 2012 film Revolution and the 2015 film The Fight for Bala.

If you haven’t seen Sharkwater yet, and have the ability to access it (it’s available on a number of streaming services, including ones that do not require a subscription), take the time to watch it. The Sharkwater website also contains a teacher’s guide for teaching this film to secondary school students, which may also be useful for home viewing, especially if you watch the film with teens.

sharkwater-1

Scene from Sharkwater

 

Leave a comment

« Newer PostsOlder Posts »