Home / Page 2


Great Ecology to Present with Blue Latitudes at Decom World

Great Ecology is excited to announce that we will be teaming with Blue Latitudes on a panel at Decom World this year in Houston (February 19 – 21), for the 2018 Decommissioning & Abandonment Summit. The panel, which will include Dr. Mark S. Laska, founder and President of Great Ecology, will focus on end of life planning options for oil platforms worldwide. We would love to see you there!

Leave a comment

Stapleton Open Spaces Win 2017 ASLA Colorado Merit Award

Denver is semi-arid—it averages about 15 inches of a rain a year, which is why Denver isn’t filled with large trees (at least in areas that aren’t alongside river systems or in well-irrigated greenscapes). In our line of work, it’s critical to consider which plants would grow best with little-to-no irrigation—so they can survive long term in Denver’s climate, without adding strain to the water resources. Yet, we also want to provide an aesthetically pleasing place for people to engage in passive or active recreation and restore ecosystem services that support the overall health of the Denver area.

Great Ecology has been working on the 2017 ASLA Merit Award-winning Stapleton planned community, led by CIVITAS since 2013. Our work has primarily focused on restoring the landscape, including revegetation plans for open space areas. One of the design goals was to create prairie-like landscapes, which restore historic prairie landscapes that used to fill the Denver-Metro area. These prairie-like open spaces are interconnected through a series of trails and underpasses that allow people (and other animals) to safely avoid traffic.

Prairie grasses, and other native plants, tend to have deeper root systems which can increase water infiltration, decrease soil compaction, and provide soil stability. Additionally, they can provide important habitat for a variety of animal species.

The planting plans we assisted with are keyed into each microclimate and microtopography, with a focus on low- to no-irrigation plants. This is coupled with designs that encourage water flow and stormwater detention—which nourishes these plants when rain or other precipitation does occur. We took site-specific soil conditions into consideration, and suggested soil amendments to increase the likelihood of successful early plant establishment and long-term sustainability.

We’re thrilled to have been part of such a great team, and are honored that this project was selected by ASLA’s Colorado Chapter for a 2017 Merit Award for the creation of a water-resilient parks system.

Leave a comment

Laurel Glass Lees Named Regional AEP Director at Large

Great Ecology is pleased to announce that our  Western Regional Director, Laurel Glass Lees, who serves as Vice President of Membership for the San Diego Chapter of the California Association of Environmental Professionals (AEP) was recently voted into a Director-at-Large position with the AEP State Board. This two-year term, which begins in January, offers Laurel additional leadership opportunities to provide direction, guidance, and overall coordination of the organization statewide. As part of this role, Laurel will act as the Board representative for each member not represented by one of the nine chapters throughout California. In conjunction with the other Directors-at-Large, she will maintain the annual California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA) workshops and provide input to committees that establish and implement programs for creating new membership services or recruiting. Laurel will also participate in Board meetings, the annual AEP Institute, the annual AEP Summit, and other statewide events that seek to enhance, maintain, and protect the quality of the natural and human environment.

Leave a comment

Emily Callahan & Amber Jackson Named to Forbes 30 Under 30

Great Ecology is pleased to announce that Associate Ecologist Emily Callahan, and Ecologist Amber Jackson, were named as part of Forbes’ 30 Under 30 in Energy. Emily and Amber are co-founders of Blue Latitudes, which works with oil companies to transform their offshore oil platforms into environmentally beneficial artificial reefs. We’re proud to have them on our team—and of all the work they do to make the world a better place.

Leave a comment

Species Spotlight: Lynx

By: Liz Clift

Not too long ago, sand cat kittens were filmed for the first time, and the internet went gaga over the brief video—especially the portion of the internet that’s convinced the internet is for cats.

So, I pose this question to you: what could be better than cats wearing snowshoes?

Yes, these exist.

Well, sort of.

Canada lynx (Lynx canadensis) are a member of the cat family that lives primarily in boreal forests that receive high levels of snowfall—and so in the US are generally found in Alaska and in montane forested areas along the Canadian border; although, they can also be found in high elevations further south in the contiguous US. They have giant paws that help distribute their weight over the surface of the snowy areas in which they live—which allows them to more effectively pursue their prey.

Lynx populations—like many other predators—fluctuate in response to their food supply. Lynx primarily eat snowshoe hare (Lepus americanus), so when populations of snowshoe hare decrease, so do populations of lynx. Lynx typically have litters of up to five kittens, but particularly food-rich years and a fertile mother can lead to litters of up to seven. In years of scarcity, these litters are smaller, which helps keep populations in check (there’s no evidence of significantly higher adult mortality when prey populations are smaller).

Lynx populations are dependent on areas with stands of conifer (also a preferred habitat of snowshoe hares)—which are areas that can be disturbed by forest fire or landslides, but also human-caused disturbances such as mining, logging, and infrastructure or housing development, all of which can cause habitat fragmentation and loss. Additionally, with lynx, there’s evidence that competition from other predators can also impact lynx populations—and that this competition can be increased as other resources, including habitat, become scarcer.

This has implications for how we think about restoration—and how we think about development projects. Do we include wildlife corridors as a part of our planning process (even while development or logging or mining is happening)? Do we try to replicate natural patchiness upon restoration, and provide phased restoration work that will provide a mix of older and younger conifer forest? How do we best pay attention to all the factors that make up critical habitat for species of concern?

These questions are important for considering how this species can be de-listed (it was listed by US Fish and Wildlife Service as threatened in 2000). For this to happen, its population will need to continue to increase, which means we must work to negate habitat loss and fragmentation.

And we should do this because lynx provide economic benefits by controlling snowshoe hares and its other prey animals, which are considered agricultural and silvicultural pests, because these animals have evolved to be part of our boreal forest ecosystems, and because most of us want more cat videos on the internet.


Leave a comment

Great Ecology Welcomes Damian Holynskyj

Great Ecology is pleased to announce that Damian Holynskyj, AICP, LEED GA, CPHC will be joining our New York office as Eastern Regional Director. Damian has more than 13 years of experience in environmental, ecological, and sustainable land use planning. He has focused his career on mitigation banking, master plan development, green infrastructure planning, and ecosystem restoration. He’s a Certified Planner, Certified Passive House Consultant, and LEED Green Associate. He holds a BS in Environmental Biology from Rutgers and a Master of City and Regional Planning from the University of Pennsylvania.

Leave a comment

Great Ecology Welcomes Laurel Glass Lees

Great Ecology is pleased to announce that Laurel Glass Lees has joined our San Diego office as Western Regional Director. Laurel comes to Great Ecology from the County of San Diego, where she was a Land Use/Environmental Planning Manager. Laurel has provided environmental planning services throughout her career; her professional certifications include Urban Planning & Development and Grant Writing. She serves on the board of the San Diego Association of Environmental Professionals San Diego Chapter as Vice President of Membership and is a member of the American Planning Association.

Leave a comment

Mange as Population Control in Foxes

By Kay Wiseman

When was the last time you observed a healthy fox in Colorado?

I moved from the mid-west to Fort Collins, CO in 2011. I work and play in the outdoors so I tend to take notice when nature seems a bit “off.” No sooner had I settled into my new city that I began seeing foxes (Vulpes vulpes) scamper about neighborhoods and green spaces. But something about them just wasn’t right.

They were out in the open in the middle of the day.

They didn’t shy away at the first sign of people.

They looked absolutely dreadful; scrawny, dirty, scabby, tailless.

They were not the foxes I remember from back east. What I soon learned from my colleagues was that I had apparently moved to the Front Range during a major sarcoptic mange outbreak.

Natural systems have a process of checks and balances for populations. Populations generally fluctuate in regular cycles over periods of time. In some instances, a species population can seemingly grow exponentially until it reaches a certain carrying capacity1 and then rapidly decline. If you paid attention in middle or high school science, you’ll remember this as a “J-curve” pattern.

While there are many causal factors that must be taken into account for these declines, one factor that contributes significantly is disease. A species approaching carrying capacity is competing with itself for resources. As resources become scarce, the health of individuals may decline, which increases their susceptibility to disease. For the Front Range foxes, disease came in the form of sarcoptic mange, and to a lesser extent, rabies and West Nile.

Sarcoptic mange is caused by burrowing mites in the Sarcoptidae family. The mites dig through the skin causing intense itching and inflammation. Foxes that have contracted these mites scratch and bite furiously causing skin damage and opening themselves up—very literally—to severe infection. Mange is highly contagious in mammals and can even be transmitted to humans through direct contact. In humans, sarcoptic mite infection is referred to as scabies…gross. Luckily, for humans and our domestic animal friends, there is treatment. Unfortunately for wildlife, nature must take its course.

As much as we complain about the sly fox breaking into our hen houses, these adorable little predators have an important role to play and sadly we never seem to appreciate that role until they’re gone. During the outbreak, the Front Range reported increased rodent populations such as rats (Rattus spp.) and rabbits (Sylvialgus spp.; Lepus spp.), as well as outbreaks of disease carried by rodents. Health departments across the state were reporting human cases of tularemia (rabbit fever), hantavirus, and plague. Without predators, like the fox, the rodent population was not controlled and their numbers skyrocketed exposing people to an elevated risk of disease transmission.

After this 2 to 3 year mange outbreak ended, I no longer observed foxes anywhere along the Front Range. In fact, it was the summer of 2016 before I saw my first healthy fox in Colorado. The fox was beautiful with a sleek red coat and fluffy white tipped tail. Over the next year, I observed multiple frolicking foxes and my face lit up with excitement each and every time. The once devastated fox population is rebounding! Watch your hens everyone!

Photo: Red fox observed in Fourmile Canyon, Boulder County. Photo courtesy of Michael Duran


1 The carrying capacity of a population represents the absolute maximum number of individuals in the population, based on the amount of the limiting resource available. An Introduction to Population Ecology – The Logistic Growth Equation. Brandon M. Hale and Maeve L. McCarthy

Leave a comment

Sea Otter Awareness Week

By Liz Clift

Sea Otter Awareness Week is September 24-30, 2017

This summer, I had the opportunity to watch an otter hunt in the surf off the coast of Olympic National Park, in Washington state. The otter rode the waves in, close to the shoreline, and then swam back out, repeating this routine a couple of times before settling on a rock to watch us humans.

Sea otters (Enhydra lutris) are the heaviest members of the weasel family (male otters weigh up to 100 pounds), and unlike other marine mammals, lack a layer of blubber to help keep them warm. Instead, they have the densest fur in the animal kingdom (as many as a million hairs per square inch). This means that though they may look wet, the water isn’t actually penetrating all the way to their skin.

Mother sea otter with rare twin baby pups, presumed to have been born just one or two days earlier on June 23-24, 2013. Photo taken 24 June 2013, Morro Bay, CA.

In fact, sea otter pups have such dense fur, they can’t dive under water until they get their adult fur. This is likely a survival adaptation: this dense fur will help keep them warm and also allows the mother to safely leave their pups floating on the surface of the water while they hunt for food.

Like other members of the weasel family, sea otters are carnivores. They eat urchins, shellfish (including mussels and clams), a variety of snails, squid, and a few dozen other marine species. Sea otters may store food they’ve gathered—or a favorite rock—in the large sections of extra skin near their armpits. This extra skin acts as a pocket (and who doesn’t want more pockets??).

A male might eat approximately 20 to 25 pounds of food a day! Much of this eating occurs on the surface of the water, and an observer might see an otter floating on its back and smashing a shellfish against a rock the otter has balanced on its chest in order to get at the meat.

Of course, if you’re lucky enough to see sea otters regularly, you’ll notice that they float on their back for more than just eating. They’ll also casually float in groups, called rafts (and these rafts may include hundreds of individuals!) to rest. When they’re resting, they often wrap themselves in kelp to keep themselves tethered to a single area, and mothers will also do this to their pups.

Otters play a valuable role in kelp forest ecosystems by helping control the sea creatures (including sea urchins) that would otherwise eat (and devastate) these kelp forests. Unfortunately, due to fur trading, their historic numbers have plummeted, which means these ecosystems have changed. To give you an idea of the scale of devastation around the sea otter fur trade here are some numbers:

  • Historic population: estimated between several hundred thousand to more than a million
  • By early 1900s: worldwide numbers of 1,000 to 2,000 individuals
  • As of today: approximately 106,000

Although they have made a fairly remarkable recovery, sea otters aren’t in the clear yet. They remain on the IUCN Red List (endangered) and now face threats of infectious disease. As recently as 2015, hundreds of sea otters showed up sick or dead along Alaska’s southern coast as the result of toxins from harmful algal blooms and bacteria. There’s also the possibility that orcas (aka, killer whales, Orcinus orca) have started to eat otters as their other food resources have disappeared, although even if this is true, it does not account for the large otter die-offs.

As sea otter populations to continue to fluctuate, we should consider how this impacts our coastal ecosystems in the areas where they live—and how this, in turn, impacts our local economies since the  kelp forests that rely, at least partially, on otters (at least on the west coast) also provide shoreline protection against waves, and foster greater biodiversity of fish, crustaceans, bivalves, and other animals.

California Sea Otter (Enhydra lutris) resting in a colony of a dozen sea otters and wrapped in kelp (Photo from Mike Baird, 2010, Flickr)

Leave a comment

Bullfrog as Invasive? Depends on Where You Live

By Liz Clift (with thanks to Joseph Ehrenberger!)

If you grew up in one part of the US (many of the eastern states extending into the Great Plains), the calling of the American bullfrog (Lithobates catesbeianus) was probably a staple of your childhood evenings. If you grew up in other places, perhaps not so much.

However, this might be changing. The American bullfrog can show up as an aggressive—and invasive—species in parts of the US where it isn’t native, and is able to outcompete native frog species. It doesn’t just impact frogs though. The American bullfrog will eat anything it thinks it can get in its mouth, including small rodents, birds, and other frogs—which means it can have a detrimental impact on some threatened and endangered species or state-listed species of concern.


Of course, in the eastern US, bullfrogs will still prey upon native frogs and anything else they can fit in their mouth. But, there is a greater amount of water and more diverse aquatic habitats. This means that bullfrogs and other frog species are better able to co-exist. In general, bullfrogs are especially fond of slow-moving open bodies of water, while other frogs can happily exist where there are more aquatic plants or within damp forests.

In the western US, where for the most part, water is scarcer and where modifications (like dams) have altered natural watercourses, bullfrogs have a prime opportunity to outcompete other frogs. And, like other invasive species, once bullfrogs have invaded a place, they can be difficult to remove. This is due in part to the large number of eggs that they lay (females may lay a clutch of 20,000 eggs!) and the fact that removing adults can actually improve the survival of tadpoles, since the adult bullfrogs are cannibalistic.

In addition, they have lived for decades in many of the places where they are invasive, which means well-established populations must be dealt with (this is all the more reason to take steps to remove bullfrogs as soon as you notice them, if you live a place where they are not native). Bullfrogs can also travel nearly a mile in search of a new place to colonize, if something happens to their initial home—which could include draining a pond or other water resource, which is one of the methods of dealing with a bullfrog invasion.

Traditionally, practices for managing bullfrogs have included hunting/eating them, temporarily—and repeatedly—draining the ponds or other areas they have taken up residence, and potentially introducing (if necessary) predatory insects or other animals like largemouth bass into ponds where tadpoles are found. (Unfortunately, bullfrogs and their tadpoles don’t taste that great to many fish—so the fish may suck in a tadpole only to spit it back out.)

Northern Leopard Frog

However, these practices can only do so much on their own. Additional, and more creative, management options should be considered. If bullfrog populations are managed, then native frogs tend to move back in fairly readily (or will re-establish once re-introduced). This is promising in terms of increasing biodiversity in areas impacted by bullfrogs.

Great Ecology is working with Adaptation Environmental Services to develop and implement some innovative approaches to bullfrog management in Colorado—and citizen-science may be one of the ways to monitor populations of bullfrogs compared to native frogs, such as the northern leopard frog (a species of special concern in Colorado) before and after such measures are taken. Citizen-science can also help detect a problem early on, if frog monitoring is incorporated into a management plan.

Not sure you can tell the difference between a bullfrog and other frogs? One way is to listen to their calls. Here is your moment of bullfrog-sound zen (so that you’ll know when you’re listening to a bullfrog and when you’re listening to some other frog, say a northern leopard frog).


Leave a comment

« Newer PostsOlder Posts »