Home / Page 2

Blog


Important Women in Ecology (Part I)

By Liz Clift

March is women’s history month—and when looking back on recent scientific history, most people probably think of prominent male figures when they picture famous ecologists and conservationists. We’re going to counter that narrative by featuring 13 women who have made a difference in ecology, conservation, restoration, or a related field. These women appear in alphabetical order by last name.

Jodie Darquea Arteaga is a leader at Ecuador Mundo Ecologico and an associate research professor at Ecuador’s State University of the Santa Elena Peninsula. Ecuador Mundo Ecologico is an organization dedicated to understanding by-catch—when fishing lines accidentally entangle non-target species (like turtles, dolphins, or birds)—as it occurs in small fleets. This is, in part, because small fleets don’t face the same international regulatory requirements as industrial fishing vessels, despite the fact that the smaller boats may number in the thousands. Before her work began, there was no documentation of bycatch by these fishermen. Now, alongside other partners, she has documented more than 700 of these fishing trips.

Janine Benyus, author of Biomimicry: Innovation Inspired By Nature and co-founder of the Biomimicry Institute, helped revolutionize design thinking. The practice of biomimicry adheres to six design lessons that species use to survive and thrive: adaptation, attunement and responsiveness, evolution, resource efficiency, life-friendly chemistry, and the integration of development with growth.

Rachel Carson is perhaps best known for Silent Spring, which alerted the world to the perils of DDT. However, this was far from her only published work. She also wrote extensively about Atlantic marine ecology, particularly coastal and intertidal ecosystems. Carson worked for the Bureau of Fisheries (which later became the US Fish and Wildlife Service) for many years and continued to write both essays and books, while also battling challenges from the chemical industry about DDT.

Ruth Defries, Ph.D.,uses remote sensing to better understand how the Earth’s habitability is influenced by human activities, which can alter climate, nutrient cycling, biodiversity, and other ecosystem services. She has recently(?) focused most of her attention on tropical deforestation and the impacts it has on atmospheric carbon emissions.

Amrita DeviAmrita Devi was a member of the Bishnoi religious community, which respects the sanctity of all forms of life. Bishnoi’s view the Khejri tree (Prosopis cineraria) as a critical life force in the desert. In 1730, the King of Jodhpur sent his army to Bishnoi villages to cut trees for his palace. Amrita Devi ran to one of the trees and hugged it to stop it from being felled. She, along with many other Bishnoi, were massacred protecting their trees. Their sacrifice later inspired the Chipko Andolan movement.

Marjory Stoneman Douglas was a journalist, author, racial justice and voting rights advocate—and a staunch defender of the Everglades. She fought against efforts to drain the massive wetlands and transition the land for development. In the 1920s, she joined the board of the Everglades Tropical National Park committee, the goal of which was to designate the Everglades as a national park. By the 1970s, she focused her critiques on damages being done to the Everglades through development and pollution. Her efforts earned her monikers such as “Grande Dame of the Everglades.”

Sylvia Earle, Ph.D., is a marine biologist, explorer, author, and public speaker who leads Mission Blue and was the first woman to become chief scientist of the National Oceanic and Atmospheric Administration. She has been a tireless advocate for the oceans, has led more than 50 expeditions, and has clocked more than 7,000 hours under water (for context, there are 8,760 hours in a year).

Nicole Hernandez Hammer is a sea-level researcher and climate activist who began her career in south Florida, where she was raised. Although she started in academia, she later switched to advocacy after concluding that academic work takes too long to reach vulnerable populations. She’s particularly interested in the disproportionate impacts of sea-level rise on Hispanic and other populations that reside in coastal areas.

Robin Wall Kimmerer, Ph.D., is a plant ecologist and botanist, and a Professor of Environmental and Forest Biology at the State University of New York. She supports the Traditional Ecological Knowledge approach, which integrates empirical science with cultural and spiritual considerations, and founded the Center for Native Peoples and the Environment based on this philosophy. The mission of this Center is to create programs that rely on both indigenous wisdom and scientific knowledge to support healthy environments. She is a member of the Citizen Potawatomi Nation and the author of two books and numerous articles. In addition to her work helping to weave together indigenous wisdom and empirical science, Kimmerer believes that one of the ways to curb ecological destruction is to talk about nature in a different way. She points [AR1] out that we talk [AR2] about anything non-human as an “it,” and that this is part of [AR3] linguistic imperialism—a habit which makes it easier for us humans to destroy the earth rather than coexist with[AR4] the other beings of the world.

“Language has always been changeable and adaptive. We lose words we don’t need anymore and invent the ones we need. We don’t need a worldview of Earth beings as objects anymore. That thinking has led us to the precipice of climate chaos and mass extinction. We need a new language that reflects the life-affirming world we want. A new language, with its roots in an ancient way of thinking.” – Robin Wall Kimmerer

Wangari Maathai, Ph.D., founded the Green Belt Movement in Kenya. The organization restores degraded watersheds and forest lands by planting trees, which improve water catchment, stabilize the soil, and reduce poverty in local communities by providing food and firewood. Since the organization’s founding, Green Belt Movement communities have planted more than 51 million trees in Kenya. The Movement also focuses on empowering people to address the needs of their community through civic and environmental seminars.

Patricia Medici, Ph.D.,is a Brazilian conservation biologist whose main area of study has been protecting the vulnerable tapir population, a jungle-dwelling mammal that is similar to a pig but with a short trunk. Tapirs help shape plant biodiversity in the areas they inhabit and also improve the survival rate of large predators. Alongside those efforts, Medici also focuses on tropical forest conservation, landscape ecology, community-based conservation, and metapopulation management. Since one of the biggest threats tapirs face is from vehicular traffic, Medici and her team decided to add highly reflective stickers to the tapir’s tracking collars, with the hope of increasing their visibility.

Peggy Shepard is an international leader in the fight against environmental racism. In 1991, at the First National People of Color Environmental Leadership Summit, she helped draft the Principles of Environmental Justice, which aim to ensure justice, respect, and environmentally safe livelihoods for all populations. She is also the co-founder and executive director of WE ACT for Environmental Justice, which has helped New York residents—and people across the globe—engage in community-based campaigns to improve environmental protection and health policies.

Terry Tempest Williams is a conservationist and author whose writing is rooted in the American West. She focuses on topics such as ecology, wilderness preservation, public health, and the relationship between culture and nature. She has written extensively about the ways human activities impact ecological systems, the changing shape of landscape due to natural and anthropogenic causes, and how power can corrupt not just individuals but ecosystems and culture.

We can’t cover all of ecology’s prominent women in the space of one blog—so keep an eye out for our next article in a few days that will highlight even more of science’s revolutionary females.

Leave a comment

Australia’s Other Reef

By Liz Clift

It’s easy enough to think about Australia’s Great Barrier Reef (GBR) and call it to mind: you might imagine bright corals or giant clams. You might picture great white sharks or sandy beaches. Chances are good that your  mental picture is full of bright colors—from the corals,  the tropical fishes, and even the aquamarine waters themselves. Maybe you’ve even visited  and you can feel the water over your skin, the snorkeling or scuba mask on your face, the bubbles brushing against you. Maybe you’ve tickled one of those giant clams just to watch it snap shut or even come face to face with a moray eel.

If you’re more familiar with the troubles befalling the GBR, you might instead be picturing the freshwater flood waters that have been impacting it in recent weeks, vast swaths of bleached corals, and ghosts of what used to be a teeming ecosystem. You wouldn’t be far off if you imagined an occasional fish swimming through a nearly barren landscape with algae coating what once were vibrant, colorful corals.

The GBR is foundational to fisheries along Australia’s eastern shore. It brings in tourism dollars, supports diverse and endemic species, and offers shoreline protection, among other ecosystem benefits. But did you know there’s another, lesser known reef system that spans much of Australia’s southern coastal areas—and that(?) may be just as important in terms of providing habitat for a variety of marine life, protecting the shoreline, and offering carbon sequestration?

The Great Southern Reef—a system of temperate rocky reefs that spans 71,000 km2—is defined by dense kelp forests, which support sponges, abalone, fish, corals, sea stars, sea urchins, and crustaceans, among many other animals, some of which do not exist anywhere else on earth. This includes the weedy seadragon (Phyllopteryx taeniolatus) and the harlequin fish (Othos dentex), but in some areas as much of 80% of the species may be endemic.

And these kelp forests are nothing to scoff at. They produce nearly 145,000 pounds of biomass per hectare (roughly 2.5 acres) per year, which is six times the yield of Australia’s wheat crops. They support the tourism industry and a number of fishing industries (including abalone and rock lobster), and provide significant carbon sequestration.

Unfortunately, these kelp forests are also disappearing. The waters these kelp forests live in are some of the fastest warming regions of the ocean—and were recently(?) pummeled by heat waves, exacerbating the problem. In 2011, a heat wave rocked the region and brought record high temperatures. Since kelp prefers cooler [AR1] temperatures, many of the forests were destroyed; 43% disappeared entirely by 2013. Giant kelp (Macrocystis pyrifera), one of the species that make up these forests, has lost 95% percent of its range over the past 75 years. To put that in perspective for you: that’s basically the same amount of time since the end of World War II—which isn’t all that long ago. And locals have been discussing the decreasing kelp population in the area for years—in part because in some areas, a large part of the economy is reliant on kelp or the species found living among the kelp.

And, rather than the kelp growing back, it’s being replaced with “turf-forming” seaweeds that are more tolerant of warmer waters. At the same time, the inhabitants of these kelp forests are being replaced with tropical species that are drawn to warmer waters. In recognition of the way these ecosystems are changing, the Australian government listed giant kelp forests as an endangered community in 2012 (a designation that still hasn’t been granted to the country’s coral reefs).

One theory about why the kelp forests are having trouble growing back is because kelp propagates via spores (like a fern), and in some areas, ocean currents move water away from places where the kelp has died back. Even when these areas are manually replanted, they may be impacted by species like parrotfish, which is a tropical grazing species. Parrotfish graze on algae—which can benefit corals, but impacts macroalgaes, like kelp. These events could further exacerbate the strain on a species that prefers cooler, nutrient rich waters and is currently having to live in waters that are much warmer than previous points in recorded history.

So what is there to do? With all the news about the impacts of global warming, it’s easy (and maybe even tempting) to feel overwhelmed. There is so little that individuals can do most of the time—especially if you’re already being more conscious of how you consume goods and services. But in this case, there is at least one more thing you can do (depending on where you live).

Researchers have developed a citizen-science opportunity for divers and non-divers alike to support research and restoration efforts. Reef Explorers Down Under offers opportunities to become involved in  efforts to protect the Great Southern Reef.  Most of the opportunities are best suited to someone in Australia (and near Sydney) or with the ability to travel (who is also SCUBA certified), but there may be opportunities for others to get involved as well. If nothing else, you can support them on social media.

If you don’t live in a place where you can directly participate in the citizen-science project, this may feel like very little. But you can also help raise awareness about the Great Southern Reef by sharing blogs (like this one) and articles that discuss the Great Southern Reef to help raise broader awareness of this ecosystem and its plight.

Featured Image from: Australian Academy of Science

Leave a comment

Chris Loftus Among First to Earn SITES AP Credential

Chris Loftus, Senior Landscape Architect at Great Ecology has earned the SITES Professional (SITES AP) credential through Green Building Certification Inc. (GBCI), placing him among an elite group of professionals dedicated to elevating the value of landscapes in the built environment.

The SITES AP establishes a common framework to define the profession of sustainable landscape design and development. It provides landscape professionals the opportunity to demonstrate their knowledge, expertise, and commitment to the profession. SITES APs possess the knowledge and skills necessary to support the SITES certification process, including participating in the design and development process, support and encouraging integrated design, managing the application and certification process and providing advocacy and education for the adoption of SITES.

Leave a comment

Podcast Episodes to Intrigue and Inspire You

By Liz Clift

It’s been a while since we posted about podcasts—which are a great way to learn new information, hear other people’s stories, or catch up on the news—so we decided it’s time to post about them again. But this time we want to do it differently.

Here are some podcast episodes we’ve loved that have a nexus with spending time outside or  improving/bolstering our understanding of the more-than-human world. There are plenty of podcasts available if you want the entire focus to be about the outdoors or ecology. This isn’t that. This time we’ll highlight particular episodes of podcasts that may be centered on science—or for which science may only be a small part of their focus.

Think of these as “tasters” for podcasts you may or may not already know—and which may or may not always focus on the outdoors, ecology, or related topics.

Podcast: Lore

Episode: 108 – Debris

Family Friendly?: Yes

Summary: Anyone familiar with Lore knows that host, Aaron Mahnke, does his research (with assistance from Marcet Crockett) on folklore. This episode focuses on our oceans—and the monsters we find within them. He covers tales of “sea monsters” that actually come with some pretty reasonable explanations, but also offers insight into the human psyche and why we create such mysteries around the depths of our oceans.

Podcast: StoryCollider

Episode: December 15, 2015 Adam Foote: The Sea Urchin Massacre

Family Friendly?: More or less (mentions sea urchin sex)

Summary: StoryCollider’s narrators tell true, personal stories about science. In this episode, Adam Foote wants to get sea urchins (shipped  from San Diego) into Pittsburgh during a polar vortex. Unsurprisingly, things don’t go exactly as planned.

Podcast: The Moth

Episode: Butterflies Beneath the Ice

Family Friendly: Yes

Summary: James McClintock discusses polar diving from the perspective of a chemical ecologist—and what it was like to dive under eight feet of sea ice—including seeing a collage of corals, urchins, and other animals. Things change when he sees a shrimp wearing a little orange backpack.

Podcast: Good Job Brain

Episode: 21 – Plants are Messed Up

Family Friendly: Yes

Summary: As a family friendly trivia podcast, Good Job Brain episodes are generally filled with nuggets of trivia coupled with some story-telling. This episode focuses on the bizarre world of plants. If you like this one, you’ll also want to check out Episode 10 – Animals are Weird (and it may make you think differently about some of your favorite sweet treats).

Podcast: Sawbones

Episode: Poison Ivy

Family Friendly: Yes

Summary: She’s a medical doctor, he plays a goofball who doesn’t understand things—but together this husband and wife team dissect weird aspects of medical history (and sometimes the(?) medical present). In this episode, they explore the medical history of poison ivy—which pretty much anyone who works in the field tries to avoid, since it can cause skin irritation (or worse for some people). You might be surprised by how it has been used in the field of medicine.

Podcast: Science for the People

Episode: 494 – The Tangled Taxonomic Tree

Family Friendly: Yes

Summary: You might still think about the tree of life or the evolutionary tree—but science has moved on to something much more complex. This podcast explores the tangled web of taxonomy in an accessible way.

Podcast: Undiscovered

Episode: The Long Loneliness

Family Friendly: Yes

Summary: Thousands of people each year spend a collective $2B annually to watch whales—but we haven’t always been so enamored with these massive creatures. In fact, Americans used to think of whales as the raw materials for margarine, animal feed, and fertilizer. This podcast explores what changed in the ways we think about these mammals.

Podcast: Escape the Zoo

Episode: Amber Jackson + Emily Hazelwood – Rigs-to-Reefs

Family Friendly: Yes (but fairly scientifically technical)

Summary: Great Ecology associates Amber Jackson and Emily Callahan Hazelwood discuss the transformation of oil rigs into productive reefing structures—which can provide valuable habitat for a variety of marine life. They also discuss how removing an entire “platform jacket” from one of these oil rigs can completely collapse the small ecosystem that formed around the rig. If you want to learn more about their work with converting rigs to reefs, check out their website or listen to their interview on Ocean Alison. They also appeared on Living Lab on NPR.

Podcast: On Being

Episode: Robin Wall Kimmerer – The Intelligence in All Kinds of Life

Family Friendly: Yes

Summary: Robin Wall Kimmerer provides an interview to Krista Tippet about the beauty and intelligence of the more-than-human world, including a discussion about how she became interested in pursuing science in a way that assumes part of the world’s beauty is through evolution. As an example, Kimmerer speaks about the combination of asters and goldenrods in a field, which appear beautiful to people because of their contrasting colors—but which also help attract more pollinators than either plant would alone. If you’ve read (or heard about) Braiding Sweetgrass or Gathering Moss, you’ll want to listen to this interview.

What podcast episodes that are related to ecology, biology, marine science, or botany have you particularly enjoyed? Remember, the goal isn’t that every episode of the podcast be focused on some branch of ecological science (although that may be true), but to find good podcasts that also include a solid basis in science or story-telling. Please link to your favorite episodes on your Facebook page about this blog!

Leave a comment

Hunter’s Point South Phase II – Best Urban Landscape Project

Great Ecology is pleased to announce that Hunter’s Point South, Phase II has been named the Best Urban Landscape project for 2019 by the Municipal Arts Society. We are so pleased with the work our team has put into this effort.

Members of the Great Ecology team designed the approximately one acre tidal wetland mitigation and habitat creation and provided extensive permitting support. This included a Wetlands Functional Analysis and an Evaluation of Planned Wetlands. Great Ecology’s design accounted for predicted sea-level rise to ensure long-term project success.

Leave a comment

If a Tree Falls in a Forest, and No One Knows What to Call It, Does It Exist at All?

I

By: Liz Clift

On a recent trip, I was back in a familiar landscape where I know a number of the names of native plants—not just trees and flowers, but grasses as well. Being able to recognize these deepened my sense of temporarily returning home, and what it means to belong to a place.

The experience also led me to consider how an ecological vocabulary changes the way we see the world. Much like having a vocabulary around estuary English, having a vocabulary around one’s local ecological environments can add depth and texture to the world. A red-capped mushroom with charming white spots is no longer just a toadstool, or just warning that it’s poisonous. It’s suddenly likely Amanita muscaria (and culinary, if properly identified and prepared. That being said, please don’t eat foraged mushrooms unless you’re very certain in the ID.). Finding a good spot for morels (Morchella spp.)is an opportunity to become acquainted with that plant community—and the conditions that cause morels to fruit. The evergreen becomes a conifer becomes western red cedar (Thuja plicata), whose boughs have been used for medicinal purposes for longer than time can tell and which may have modern applications as a broad-spectrum anti-microbial.

Environmental biologist, botanist, and professor Robin Wall Kimmerer writes that an ecological vocabulary is more than just a base of knowledge. She argues that knowing the names of plants and animals turns them from objects into a part of our communities. She writes

“When I am in the woods with my students, teaching them the gifts of plants and how to call them by name, I try to be mindful of my language, to be bilingual between the lexicon of science and the grammar of animacy. Although they still have to learn scientific roles and Latin names, I hope I am also teaching them to know the world as a neighborhood of nonhuman residents, to know that, as ecotheologian Thomas Berry has written, ‘we must say of the universe that it is a communion of subjects, not a collection of objects.’”

However, we’re losing nature-words, words that describe our local ecologies all the time. In 2007, the Oxford children’s dictionary removed a number of nature-based words, including acorn, ash, beech, bluebell, buttercup, catkin, cygnet, dandelion, fern, hazel, heron, mistletoe, newt, pasture, and willow (along with a number of other words).

Maybe losing the word acorn from a children’s dictionary seems insignificant. However, it’s also a way to begin to erase a rich social and ecological history. Acorns not only come from, and produce, oak (Quercus spp. and Lithocarpus spp.) trees, they are also a source of food for a variety of animals (including humans). Acorns have been used to barter and for medicine. Acorns are so iconic that they’re frequently used to represent beginnings and potential. You can probably picture one right now.

But what if I asked you about something less familiar, and less ubiquitous?

Picture, if you will, blue grama (Bouteloua gracilis). Botanists, plains ecologists, native plant nerds, and a handful of others can probably call it to mind with no problem. We even have a cute trick to help ourselves remember what it looks like.

Got it in your mind?

Unless you’re in a job that requires you to know plains or “decorative” grasses, the answer is probably not.

Blue grama is a type of bunchgrass, which used to grow over large swathes of the upper plains, Rocky Mountains, and midwestern North America. Now, in many places, native prairies—and the grasses that make them up—have shrunk to just a fraction of their historic range. Which, if I’m being honest, is pretty unfortunate. Blue grama has florescence that resembles “a gramma’s eyebrows.” (Now you know the trick for identifying it] and the potential for an incredibly long lifespan, which means it can help stabilize soil for years.

What if I asked you to tell me what a newt is?

Or what you call a group of herons?

Or what we call a baby swan?

Or to describe the difference between a great blue heron (Ardea herodias)and a black-capped night heron (Nycticorax nycticorax)?

Or what it means if an animal is crepuscular?

Or the right way to pronounce nudibranch? Geoduck?

How are you doing with your ecological vocabulary?

My point in this isn’t to shame or provide accolades.

My point is that by losing this vocabulary, we disrupt our ability to understand the world around us and the interactions that take place. We might miss the migration of nudibranchs from deeper waters to eelgrass (Zostera marina)  beds in the Salish Sea in early summer. We don’t look for a brown lizard-like animal among the leaf litter when we’re out on a hike on a rainy day, or question why it evolved to move so slowly. We miss the opportunity to notice that a cowbird (Molothrus spp.) has replaced another bird in its nest, or to explore the relationship between the decline of sweetgrass (Hierochloe odorata)and the changes in collection and grazing patterns. We plant milkweed because we think it will help the monarch butterfly (Danaus plexippus), only we plant tropical milkweed (Asclepias curassavica)when that’s not our local variety—and as a result, potentially cause more harm to monarchs.

We say the grass is always greener on the other side, not just because things may seem better from afar—but perhaps also because we can’t tell the difference between the telltale blue-green of western wheat (Pascopyrum smithii) and the deeper green of common spike-rush (Eleocharis palustris), indicating the presence of wetter soil. From afar, perhaps it’s harder to see the places where cheatgrass (Bromus tectorum) has already given the landscape a rusty hue—and up close, if we don’t know what we’re seeing, we just know that cheatgrass leaves its seeds in our pants, socks, shoes, and wedged into the soft pads of our dog’s paws.

It’s possible, however, to encourage ecological vocabulary—both in our own lives and in the lives of people around us.

We can do this by learning—and using—the names of plants, animals, fungi, rocks, and other things we encounter, and resourcing ourselves to support this learning (through the use of field guides, apps, college and popular education courses, forays, online identification groups, and more).

In doing this, we enable ourselves to begin to rebuild our relationship to the land—and with each other. We are better able to recognize our interdependence as a species—not only with other people, but with all that makes life on earth possible.

This is not a novel concept.

Director and Founder of Local Futures writes “I have seen that community and a close relationship with the land can enrich human life beyond all comparison with material wealth or technological sophistication. I have learned another way is possible.” Indigenous activist and economist, Winona LaDuke has said “Power is not brute force and money; power is in your spirit. Power is in your soul. Power is what your ancestors, your old people gave you. Power is in the earth; it is in your relationship to the earth.” Terry Tempest Williams offers “I think our lack of intimacy with the land has initiated a lack of intimacy with each other. What we perceive as non-human, outside of us, is actually in direct relationship with us.”

With ecological vocabulary, we can begin to awaken the corners of our mind that recognize that we are part of this world, rather than architects. Wendell Berry writes “People exploit what they have merely concluded to be of value, but they defend what they love, and to defend what we love we need a particularizing language, for we love what we particularly know.” That is to say, we protect what we love, we’re more likely to love that which we know.

In this, a flower cannot simply be a flower and a bird cannot just be a bird. There still are plenty of flowers in the world. There still are plenty of birds. In Becoming Wise, Krista Tippett writes “The words we use shape how we understand ourselves, how we interpret the world, how we treat others. Words make worlds.”

Make the flower Cephalanthera austiniae, phantom orchid, the only North American orchid that doesn’t produce chlorophyll and which might be dormant for 17 years. Phantom orchid is considered a mycoheterotrophic parasite. Myco meaning fungus. Hetero meaning different. Trophic referring to nutritional requirements. The phantom orchid, then, is a rare parasitic orchid that does not have a direct attachment to its host plant, but instead gets its nutrients from the host plant via a mycorrhizal network.

Make the bird Cinclus mexicanus, American dipper, North America’s only aquatic songbird—and an unassuming little grey bird at that. It catches all its food under water in swiftly flowing streams. It is a common species in parts of the country west of the Missouri River—and can provide an indicator of stream health.

The phantom orchid and American dipper are part of the United States’ Pacific Northwest ecology. We can notice their presence or absence in a forest, or along a stream, and begin to get other clues about the ecosystem. Add to these two organisms every other organism that make up a place and you might begin to decipher other clues about the health or stress of the ecosystem, about interdependence, about historical uses of a place.

Of course, this isn’t limited to the Pacific Northwest. For instance, abundant invasive species may indicate high nitrogen levels in the soil or a recent disturbance. Prairie dog (Cynomys ludovicianus) holes suggest potential habitat for burrowing owl (Aethene cunicularia) and bullsnake (Pituophis catinefer) and are likely surrounded by clipped grasses with encroaching invasive plant species. Whitebark pine (Pinus albicaulis) occurs between 2,950 feet in British Columbia up to 12,000 feet elevation in the Sierra Nevadas, and indicate the presence of Clark’s nutcracker (Nucifraga columbiana), which these trees rely on for seed distribution.

With an ecological vocabulary, the world becomes a story, full of rich characters and relationships. We can foster these relationships not only through the tools I mention above—but through reading for pleasure. Some books (including children’s books) I’ve especially loved that focus on fostering this connection are:

B is for Bear: A Natural Alphabet by Hannah Viano

The Lost Words by Robert MacFarlane

The Edge of the Sea by Rachel Carson

Last Child in the Woods by Richard Louv

The Fragile Edge by Julia Whitty

Braiding Sweetgrass by Robin Wall Kimmerer

Eager: The Surprising Secret Life of Beavers and Why They Matter by Ben Goldfarb

Black Faces, White Spaces: Reimagining the Relationship of African Americans to the Great Outdoors by Carolyn Finney

The Wild Trees: A Story of Passion and Daring by Richard Preston

The Orchid Thief: A True Story of Beauty and Obsession by Susan Orlean

This is, of course, far from an exhaustive list. What books should I add to my reading list? Leave us a comment on social media.

Leave a comment

Seagrass, Seagrass, Who Do You See?

By Liz Clift and Jessica Foley

Have you seen this on the beach lately?

Eelgrass in the Salish Sea (photo by Liz Clift)

If you live in an area with ultra low tides during the summer—the answer is likely yes. During ultra low tides, fields of seagrass, like the eelgrass (Zostera marina) pictured above, can become exposed. However, even if you don’t have ultra low tides—and many areas don’t–you may see seagrass wash up when it becomes uprooted from its substrate due to animals feeding, storms, or human activity.

What is Seagrass?

Seagrass is a general term for a variety of underwater flowering plant that belongs to one of four families (Posidoniaceae, Zosteraceae, Hydrocharitaceae, and Cymodoceaceae). Seventy-two species of seagrass are known, and many superficially resemble terrestrial grasses in the Poaceae family (think Kentucky bluegrass [Poa pratensis], which you likely see in urban parks or even in your own yard). Seagrasses, importantly, are like terrestrial grasses, in that they can form roots and rhizomes, rather than having a “holdfast” or floating freely like macroalgae (“seaweed”).

Seagrasses grow in underwater meadows in estuarine or marine environments (not freshwater!) within the photic zone. Like terrestrial prairies or grasslands, seagrass meadows are diverse and productive ecosystems that provide shelter, forage, and breeding grounds for a variety of ecologically important and economically significant species. What you’ll find in fields of seagrass depends on where you live (i.e. tropical versus temperate climates), but some animals that commonly rely on this ecosystem include a variety of juvenile fish, American manatees (Tricherchus manatus),  sea turtles, dugongs (Dugong dugong), sea urchins, and crabs.

Crab in Eelgrass (Photo Credit: NOAA)

In addition to providing important habitat, seagrass offers a number of ecosystem services including:

  • Habitat for commercially and recreationally important fish;
  • Wave protection;
  • Oxygen production;
  • Coastal erosion protection; and
  • a carbon sink.

Total Sales Generated by U.S. Commercial and Recreational Fishing Industries:
U.S . Total-208 Billion Sales (Image Credit: NOAA)

In addition to helping support the $200 billion fishing industry, seagrass meadows account for more than 10% of the ocean’s ability to store carbon—per hectare it is able to store twice as much carbon dioxide as a rainforest! Meaning seagrass meadows are able to support the U.S. economy as well as mitigate climate change all at the same time.

Because seagrasses provide so many services and are experiencing global declines, communities are working to enhance and restore seagrass beds, which have been impacted or destroyed by human activities. Since so much of this work happens under water—and therefore out of sight to anyone who isn’t a diver or looking for news about seagrass conservation and restoration—I wanted to highlight a few of the projects occurring around the U.S. to restore seagrass habitat.

Chesapeake Bay

In the Chesapeake Bay, eelgrass beds are essential to maintaining the iconic blue crab (Callinectes sapidus) and wild oyster industries, two of the region’s most valuable fisheries. major seagrass conservation and recovery efforts, including reducing  nutrient loads and seeding seagrass have been underway. Since runoff from agriculture is a major component of nutrient pollution, state and federal agencies have  been working with farmers to incentivize better practices that has led to decreased nutrient loads in some areas.

In 2010, the Environmental Protection Agency (EPA) put the Chesapeake Bay on a “pollution diet,” or a Total Maximum Daily Load (TMDL) to reduce levels of nitrogen, phosphorus, and sediment. Six Chesapeake Bay states, and Washington D.C. must have pollution  controls in place by 2025. Earlier this year, the EPA released a “check-up” report on the pollution diet. The partnership has fallen short of its nitrogen reduction target; however, this check-up allows the six states and D.C. to use the TMDL information to continue to strive toward the 2025 target and remain accountable.

Concurrently, scientists from the Virginia Institute of Marine Science (VIMS) having been activity restoring seaside bays in the Chesapeake region. The VIMS Submerged Aquatic Vegetation (SAV) Lab has effectively broadcast 60 million eelgrass seeds over 450 acres over the last 15 years. Given the enhanced water quality in the region and successful reintroduction of eelgrass seed, the species has colonized over 6,000 acres of seagrass meadows (over 10 times its originally seeded area!). This successful restoration effort is one of the largest seagrass restoration projects by size in the world.

Photo: Aerial photographs of one Chesapeake eelgrass restoration site in South Bay in 2004 (left) and 2008 (right). By 2008, the area within the polygon had become almost completely vegetated with eelgrass (Orth et al. 2010).

Salish Sea

In the Salish Sea, seagrasses provide critical habitat for herring (Clupea harengus pallasii), Dungeness crabs (Metacarcinus magister), and young salmon (all of which support many types of wildlife and are important commercially and recreationally), and six different types of seagrass exist in this area, of which eelgrass is the most widespread.

However, eelgrass (and other seagrass) growth can be hampered by algal blooms, overwater structures because these things block light, sediment loading, shoreline armoring, and vessels anchoring or mooring. Since seagrass is a vital component of this ecosystem, in 2011, an interdisciplinary taskforce developed a strategy with five overarching goals to help Washington state reach its target of expanded eelgrass habitat by 20 percent between by 2020. The goals are:

  • Conserve existing eelgrass habitats;
  • Reduce environmental stressors to support eelgrass expansion
  • Restore and enhance degraded or declining eelgrass meadows;
  • Identify research priorities; and
  • Expand outreach and education.

The Port of Bellingham, which is part of the Salish Sea has also supported eelgrass recovery efforts, including the redesign of a waterfront park to connect tideflats and eelgrass beds. This project won the American Shore & Beach Preservation Association (ASBPA) award for best restored beach in the Northwest in 2012 and America’s best restored beach in 2009.

Sand Dollar Exoskeleton among Seagrass, Marine Park, Bellingham, WA (Photo Credit: Liz Clift)

Tampa Bay

Since the 1800s, Tampa Bay has lost approximately 80% of its seagrass coverage. Many areas of the Bay were historically affected by direct input of raw sewage from the adjacent communities. This type of nutrient pollution allowed for think mats of algae or seaweed to take over and block all the available light to the seagrasses.

Here, seagrass restoration will provide important fisheries for snook (Centropomus undecimalis), seatrout, and shrimp while also improving water quality. One of Tampa’s approaches to restoration focuses on micropropagation, which is a way to clone plants by collecting the terminal buds, surface-sterilizing them, and then growing them in test tubes with a specific nutrient medium. Once scientists can maintain a rapidly multiplying plant stock in the lab, they will be able to use these plants as a source for additional micropropagation or subculturing (dividing the plant into smaller plantlets and growing plants from these pieces).

This will allow for less disturbance of Tampa’s remaining seagrass beds and allows for more production in less time. Other seagrass restoration efforts include planting and transplanting grasses and repairing scars from anchors or propellers using sediment tubes.

Changes in Seagrass (Image Credit: Smithsonian)

In 1991, when the Tampa Bay Estuary Program was founded, local, state, and federal government set out to clean up and restore seagrasses in Tampa bay. Their goal was to reach 1950 seagrass levels of or nearly double the cover. By 2015, their goal was met and surpassed with seagrass covering over 40,000 acres. The recovery process involved research, planning, enhancing the water quality, and restoring grasses. Work and proper management is still continuing to this day to protect the Bay.

Conclusion

All of these seagrass restoration efforts—and many more that aren’t covered here—serve to improve habitat and forage for a variety of animals, protect shorelines, and trap carbon, among other functions.  And, since seagrass exists around the world—and can form meadows large enough to be seen from space, protecting and restoring seagrass anywhere will provide benefits beyond local coastlines. Seagrass restoration is also a two-fold effort where both enhancing water quality and reintroducing the plants are necessary for success.

Keep an eye on our blog for more posts about seagrasses. If you want to learn more about the ecology of seagrasses—as well as their ecosystem services, check out this link.

 

 

Unlinked Reference:

Orth, Robert & R. Marion, Scott & Moore, Kenneth & J. Wilcox, David. (2010). Eelgrass (Zostera marina L.) in the Chesapeake Bay Region of Mid-Atlantic Coast of the USA: Challenges in Conservation and Restoration. Estuaries and Coasts. 33. 139-150. 10.1007/s12237-009-9234-0.

Leave a comment

Great Ecology to Present at 7th International Conference on Eco-Compensation and Payments for Ecosystem Services

Associate Ecologist, Marlene Tyner-Valencourt will present at the 7th International Conference on Eco-Compensation and Payments for Ecosystem Services. The conference, which is hosted by the China Eco-Compensation Policy Research Center, RKSI, Asian Development Bank, and CAEP, will occur on December 3 – 4, 2018 in Huangshan, Anhui Province in China.

Ms. Valencourt-Tyner’s talk on December 4 will be called “Mitigation Banking in the U.S.: Practice and Conditions,” and will provide a regulatory overview of natural resources protection in the U.S., a definition of ecosystem and mitigation banking, an overview of U.S. mitigation banking marketplace, key factors for mitigation banking success, and a framework for applying these concepts and practices in China. It was co-authored with Dr. Mark S. Laska, Founder and President of Great Ecology.

The lineage of this talk includes Dr. Laska’s 2016 presentation at ADB’s Green Business Forum in Manilla and continues Great Ecology’s collaborative work with the ADB to share market-based approaches, best practices, and lessons learned to the conservation discussion in Asia.

 

Leave a comment

Dr. Laska Presents at WHC Conference!

Mark S. Laska, Ph.D., Founder and President of Great Ecology, along with Gregory R. Biddinger, Ph.D., Managing Director and Principal Scientist at Natural Land Management, LLC presented at the Wildlife Habitat Council’s Conservation Conference 2018 earlier today. The name of their session was The Future is Green: Conservation Strategies to Achieve Success.

Dr. Biddinger discussed strategies to incorporate conservation practices throughout the life cycle of a corporate project, describing the triple bottom line benefits of this approach. Dr. Laska followed up with natural land management case studies, using examples from Great Ecology’s 17-year history as ecological consultants. His portion of the session introduced strategies to optimize the value of corporate land assets, and described Great Ecology’s process to evaluate a corporate site based on its  ecological potential, the regional ecosystem marketplace, and the regulatory framework.

If you’re at the Wildlife Habitat Council’s Conservation Conference this year, we hope you’ll stop by our table and say hello! You can also learn about Dr. Laska’s work with Tellurium Partners and Ecology Landwatch, two of Great Ecology’s sister companies.

Mark Laska, Ph.D. (left) and Dave Yozzo, Ph.D

Leave a comment

Colorado Association of Stormwater and Floodplain Managers Award

Great Ecology is thrilled to announce that we have won an Environmental Excellence award from the Colorado Association of Stormwater and Floodplain Managers (CASFM) for our work on the Emergency Watershed Protection (EWP) program. Vice President of Technical Services, Randy Mandel, received this award on behalf of the company at the 2018 Annual CASFM Conference in Snowmass, CO.

Leave a comment

« Newer PostsOlder Posts »